907 research outputs found

    An analysis of the use of graphics for information retrieval

    Get PDF
    Several research groups have addressed the problem of retrieving vector graphics. This work has, however, focused either on domain-dependent areas or was based on very simple graphics languages. Here we take a fresh look at the issue of graphics retrieval in general and in particular at the tasks which retrieval systems must support. The paper presents a series of case studies which explored the needs of professionals in the hope that these needs can help direct future graphics IR research. Suggested modelling techniques for some of the graphic collections are also presented

    Search procedures revisited

    Get PDF
    Search Procedures reflects on a series of studies carried out over a four year period in the late 1970s. It was published at an interesting time for Information Retrieval. Written before Information Retrieval became synonymous with online information seeking it focuses on Information Retrieval within Public Libraries, then the major location for everyday information seeking. While many of his contemporaries focused on information seeking in academic or special library settings, Peter chose instead to focus a setting that was visited by a more diverse set of people with a broader range of information needs

    Using segmented objects in ostensive video shot retrieval

    Get PDF
    This paper presents a system for video shot retrieval in which shots are retrieved based on matching video objects using a combination of colour, shape and texture. Rather than matching on individual objects, our system supports sets of query objects which in total reflect the user’s object-based information need. Our work also adapts to a shifting user information need by initiating the partitioning of a user’s search into two or more distinct search threads, which can be followed by the user in sequence. This is an automatic process which maps neatly to the ostensive model for information retrieval in that it allows a user to place a virtual checkpoint on their search, explore one thread or aspect of their information need and then return to that checkpoint to then explore an alternative thread. Our system is fully functional and operational and in this paper we illustrate several design decisions we have made in building it

    Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation

    Full text link
    We explore the effect of spatiotemporally varying substrate temperature profiles on the dynamics and resulting reaction rate enhancement for the catalytic oxidation of CO on Pt(110). The catalytic surface is "addressed" by a focused laser beam whose motion is computer-controlled. The averaged reaction rate is observed to undergo a characteristic maximum as a function of the speed of this moving laser spot. Experiments as well as modelling are used to explore and rationalize the existence of such an optimal laser speed.Comment: 9 pages, 12 figures, submitted to Phys. Rev.

    University of Strathclyde at TREC HARD

    Get PDF
    The motivation behind the University of Strathclyde's approach to this years HARD track was inspired from previous experiences by other participants, in particular research by [1], [3] and [4]. A running theme throughout these papers was the underlying hypothesis that a user's familiarity in a topic (i.e. their previous experience searching a subject), will form the basis for what type or style of document they will perceive as relevant. In other words, the user's context with regards to their previous search experience will determine what type of document(s) they wish to retrieve

    Evaluating implicit feedback models using searcher simulations

    Get PDF
    In this article we describe an evaluation of relevance feedback (RF) algorithms using searcher simulations. Since these algorithms select additional terms for query modification based on inferences made from searcher interaction, not on relevance information searchers explicitly provide (as in traditional RF), we refer to them as implicit feedback models. We introduce six different models that base their decisions on the interactions of searchers and use different approaches to rank query modification terms. The aim of this article is to determine which of these models should be used to assist searchers in the systems we develop. To evaluate these models we used searcher simulations that afforded us more control over the experimental conditions than experiments with human subjects and allowed complex interaction to be modeled without the need for costly human experimentation. The simulation-based evaluation methodology measures how well the models learn the distribution of terms across relevant documents (i.e., learn what information is relevant) and how well they improve search effectiveness (i.e., create effective search queries). Our findings show that an implicit feedback model based on Jeffrey's rule of conditioning outperformed other models under investigation

    Teacher interventions in small group work in secondary mathematics and science lessons

    Get PDF
    Collaborative problem solving, when students work in pairs or small groups on a curriculum-related task, has become an increasingly common feature of classroom education. This paper reports a study of a topic which has received relatively little attention: how teachers can most usefully intervene when students are working in a group, but have encountered some sort of problem. The data used comes from a large scale interventional study of mathematics and science teaching in secondary schools in south east England, in which interactions between teachers and students were recorded in their usual classrooms. We identify the typical problem situations which lead to teachers’ interventions, and describe the different ways teachers were observed to intervene. We examine the different types of intervention, and consider how effective they are in helping group work proceed in a productive manner. Finally, we offer some conclusions about the practical implications of these findings.This is the final version of the article. It was first available from Taylor & Francis via http://dx.doi.org/10.1080/09500782.2015.112536

    Diffusion in tight confinement: a lattice-gas cellular automaton approach. I. Structural equilibrium properties

    Get PDF
    The thermodynamic and transport properties of diffusing species in microporous materials are strongly influenced by their interactions with the confining framework, which provide the energy landscape for the transport process. The simple topology and the cellular nature of the α cages of a ZK4 zeolite suggest that it is appropriate to apply to the study of the problem of diffusion in tight confinement a time-space discrete model such as a lattice-gas cellular automaton (LGCA). In this paper we investigate the properties of an equilibrium LGCA constituted by a constant number of noninteracting identical particles, distributed among a fixed number of identical cells arranged in a three-dimensional cubic network and performing a synchronous random walk at constant temperature. Each cell of this network is characterized by a finite number of two types of adsorption sites: the exit sites available to particle transfer and the inner sites not available to such transfers. We represent the particle-framework interactions by assuming a differentiation in binding energy of the two types of sites. This leads to a strong dependence of equilibrium and transport properties on loading and temperature. The evolution rule of our LGCA model is constituted by two operations (randomization, in which the number of particles which will be able to try a jump to neighboring cells is determined, and propagation, in which the allowed jumps are performed), each one applied synchronously to all of the cells. The authors study the equilibrium distribution of states and the adsorption isotherm of the model under various conditions of loading and temperature. In connection with the differentiation in energy between exit and inner sites, the adsorption isotherm is described by a conventional Langmuir isotherm at high temperature and by a dual-site Langmuir isotherm at low temperature, while a first order diffuse phase transition takes place at very low temperature

    Experimental and Simulation Study of Adsorption in Postcombustion Conditions Using a Microporous Biochar. 1. CO2 and N2 Adsorption

    Get PDF
    The influence of N2 on CO2 adsorption was evaluated using a microporous biochar with a narrow pore size distribution. The adsorption isotherms of pure CO2 and N2 were measured at 0, 30, 50, and 70 °C up to 120 kPa and fitted to the Toth adsorption model. Dynamic breakthrough experiments were carried out in a fixed-bed adsorption unit using binary mixtures with compositions representative of different postcombustion streams (8–30% CO2) from ambient temperature to 70 °C. Dynamic adsorption experiments were simulated to validate the mathematical model of the adsorption process, as a necessary step for its later use for process design. The Ideal Adsorption Solution (IAS) theory, based on the pure component adsorption models, was used to account for competitive adsorption with satisfactory results. The information gathered in the present work will be used to extend the validity of the model to the adsorption of postcombustion streams containing H2O in part 2.Work was carried out with financial support from the HiPerCap Project of the European Union 7th Framework Programme FP7 (2007-2013; Grant Agreement number: 60855). M.G.P. acknowledges funding from the CSIC (JAE-Doc program cofinanced by the European Social Fund). N.Q. acknowledges funding from the Government of the Principado de Asturias (Severo Ochoa Program). The authors also appreciate the support from the technical consultants of AspenTechnology Inc., M.M. and E.L.Peer reviewe

    Understanding Shale Gas: Recent Progress and Remaining Challenges

    Get PDF
    Because of a number of technological advancements, unconventional hydrocarbons, and in particular shale gas, have transformed the US economy. Much is being learned, as demonstrated by the reduced cost of extracting shale gas in the US over the past five years. However, a number of challenges still need to be addressed. Many of these challenges represent grand scientific and technological tasks, overcoming which will have a number of positive impacts, ranging from the reduction of the environmental footprint of shale gas production to improvements and leaps forward in diverse sectors, including chemical manufacturing and catalytic transformations. This review addresses recent advancements in computational and experimental approaches, which led to improved understanding of, in particular, structure and transport of fluids, including hydrocarbons, electrolytes, water, and CO2 in heterogeneous subsurface rocks such as those typically found in shale formations. The narrative is concluded with a suggestion of a few research directions that, by synergistically combining computational and experimental advances, could allow us to overcome some of the hurdles that currently hinder the production of hydrocarbons from shale formations
    corecore