8,905 research outputs found
Summary of the Very Large Hadron Collider Physics and Detector Subgroup
We summarize the activity of the Very Large Hadron Collider Physics and
Detector subgroup during Snowmass 96.Comment: To appear in the Proceedings of the 1996 DPF/DPB Summer Study on New
Directions for High-Energy Physics, Snowmass 9
An evolution equation as the WKB correction in long-time asymptotics of Schrodinger dynamics
We consider 3d Schrodinger operator with long-range potential that has
short-range radial derivative. The long-time asymptotics of non-stationary
problem is studied and existence of modified wave operators is proved. It turns
out, the standard WKB correction should be replaced by the solution to certain
evolution equation.Comment: This is a preprint of an article whose final and definitive form has
been published in Comm. Partial Differential Equations, available online at
http://www.informaworld.co
Probing the deuteron structure at small NN distances by antiproton-deuteron annihilation
The production of pions by antiproton-deuteron annihilation at rest is
analyzed. Assuming the possible existence of two delta-isobars in a deuteron
some enhancement in the distribution over the invariant mass of two negative
charged pions is predicted.Comment: 12 pages, Latex and Postscrip
Comment on "Coherent Ratchets in Driven Bose-Einstein Condensates"
C. E. Creffield and F. Sols (Phys. Rev. Lett. 103, 200601 (2009)) recently
reported finite, directed time-averaged ratchet current, for a noninteracting
quantum particle in a periodic potential even when time-reversal symmetry
holds. As we explain in this Comment, this result is incorrect, that is,
time-reversal symmetry implies a vanishing current.Comment: revised versio
Magnetic relaxation in finite two-dimensional nanoparticle ensembles
We study the slow phase of thermally activated magnetic relaxation in finite
two-dimensional ensembles of dipolar interacting ferromagnetic nanoparticles
whose easy axes of magnetization are perpendicular to the distribution plane.
We develop a method to numerically simulate the magnetic relaxation for the
case that the smallest heights of the potential barriers between the
equilibrium directions of the nanoparticle magnetic moments are much larger
than the thermal energy. Within this framework, we analyze in detail the role
that the correlations of the nanoparticle magnetic moments and the finite size
of the nanoparticle ensemble play in magnetic relaxation.Comment: 21 pages, 4 figure
Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes
A collective Hamiltonian for the rotation-vibration motion of nuclei is
considered, in which the axial quadrupole and octupole degrees of freedom are
coupled through the centrifugal interaction. The potential of the system
depends on the two deformation variables and . The system is
considered to oscillate between positive and negative -values, by
rounding an infinite potential core in the -plane with
. By assuming a coherent contribution of the quadrupole and octupole
oscillation modes in the collective motion, the energy spectrum is derived in
an explicit analytic form, providing specific parity shift effects. On this
basis several possible ways in the evolution of quadrupole-octupole
collectivity are outlined. A particular application of the model to the energy
levels and electric transition probabilities in alternating parity spectra of
the nuclei Nd, Sm, Gd and Dy is presented.Comment: 25 pages, 13 figures. Accepted in Phys. Rev.
- …
