1,624 research outputs found
Interference effects in a tunable quantum point contact integrated with an electronic cavity
We show experimentally how quantum interference can be produced using an integrated quantum system comprising an arch-shaped short quantum wire (or quantum point contact, QPC) of 1D electrons and a reflector forming an electronic cavity. On tuning the coupling between the QPC and the electronic cavity, fine oscillations are observed when the arch QPC is operated in the quasi-1D regime. These oscillations correspond to interference between the 1D states and a state which is similar to the Fabry-Perot state and suppressed by a small transverse magnetic field of ±60 mT. Tuning the reflector, we find a peak in resistance which follows the behavior expected for a Fano resonance. We suggest that this is an interesting example of a Fano resonance in an open system which corresponds to interference at or near the Ohmic contacts due to a directly propagating, reflected discrete path and the continuum states of the cavity corresponding to multiple scattering. Remarkably, the Fano factor shows an oscillatory behavior taking peaks for each fine oscillation, thus, confirming coupling between the discrete and continuum states. The results indicate that such a simple quantum device can be used as building blocks to create more complex integrated quantum circuits for possible applications ranging from quantum-information processing to realizing the fundamentals of complex quantum systems
Dark Solitons in High Velocity Waveguide Polariton Fluids
We study exciton-polariton nonlinear optical fluids in the high momentum waveguide regime for the first
time. We demonstrate the formation of dark solitons with the expected dependence of width on fluid
density for both main classes of soliton-forming fluid defects. The results are well described by numerical
modeling of the fluid propagation. We deduce a continuous wave nonlinearity more than ten times that on
picosecond time scales, arising due to interaction with the exciton reservoir
Direct observation of exchange-driven spin interactions in one-dimensional system
We present experimental results of transverse electron focusing measurements performed on an ntype
GaAs based mesoscopic device consisting of one-dimensional (1D) quantum wires as injector
and detector. We show that non-adiabatic injection of 1D electrons at a conductance of e2/
h results in
a single first focusing peak, which transforms into two asymmetric sub-peaks with a gradual
increase in the injector conductance up to 2e2/
h , each sub-peak representing the population of spinstate
arising from the spatially separated spins in the injector. Further increasing the conductance
flips the spin-states in the 1D channel, thus reversing the asymmetry in the sub-peaks. On applying
a source-drain bias, the spin-gap, so obtained, can be resolved, thus providing evidence of exchange
interaction induced spin polarization in the 1D systems. V
Unusual conductance collapse in one-dimensional quantum structures
We report an unusual insulating state in one-dimensional quantum wires with a
non-uniform confinement potential. The wires consist of a series of closely
spaced split gates in high mobility GaAs/AlGaAs heterostructures. At certain
combinations of wire widths, the conductance abruptly drops over three orders
of magnitude, to zero on a linear scale. Two types of collapse are observed,
one occurring in multi-subband wires in zero magnetic field and one in single
subband wires in an in-plane field. The conductance of the wire in the collapse
region is thermally activated with an energy of the order of 1 K. At low
temperatures, the conductance shows a steep rise beyond a threshold DC
source-drain voltage of order 1 mV, indicative of a gap in the density of
states. Magnetic depopulation measurements show a decrease in the carrier
density with lowering temperature. We discuss these results in the context of
many-body effects such as charge density waves and Wigner crystallization in
quantum wires.Comment: 5 pages, 5 eps figures, revte
Short range scattering effect of InAs quantum dots in the transport properties of two dimensional electron gas
Short range interaction between two dimensional electron gas (2DEG) and InAs quantum dots embedded in the GaAs/AlGaAs quantum well is investigated as a function of carrier density. At low carrier density the interaction is significantly characterized by a transport to quantum lifetime ratio of less than 5. However, with an increase in carrier density, quantum lifetime is observed to undergo a sharp transition from 0.17 to 0.25 ps. This is attributed to the screening of short range repulsive scattering due to InAs quantum dots by the 2DEG.open7
Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices
Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective
components for spintronic applications and are of fundamental interest in the
study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report
on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron
density and confinement in QPCs with two different top-gate architectures. We
obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding
previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in
InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential,
particularly for the lowest 1D subband. This suggests careful management of the
QPC's confinement potential may enable the high g* desirable for spintronic
applications without resorting to narrow-gap materials such as InAs or InSb.
The 0.7 anomaly and zero-bias peak are also highly sensitive to confining
potential, explaining the conflicting density dependencies of the 0.7 anomaly
in the literature.Comment: 23 pages, 7 figure
Probing the Sensitivity of Electron Wave Interference to Disorder-Induced Scattering in Solid-State Devices
The study of electron motion in semiconductor billiards has elucidated our
understanding of quantum interference and quantum chaos. The central assumption
is that ionized donors generate only minor perturbations to the electron
trajectories, which are determined by scattering from billiard walls. We use
magnetoconductance fluctuations as a probe of the quantum interference and show
that these fluctuations change radically when the scattering landscape is
modified by thermally-induced charge displacement between donor sites. Our
results challenge the accepted understanding of quantum interference effects in
nanostructures.Comment: 8 pages, 5 figures, Submitted to Physical Review
Finding a moral homeground: appropriately critical religious education and transmission of spiritual values
Values-inspired issues remain an important part of the British school curriculum. Avoiding moral relativism while fostering enthusiasm for spiritual values and applying them to non-curricular learning such as school ethos or children's home lives are challenges where spiritual, moral, social and cultural (SMSC) development might benefit from leadership by critical religious education (RE). Whether the school's model of spirituality is that of an individual spiritual tradition (schools of a particular religious character) or universal pluralistic religiosity (schools of plural religious character), the pedagogy of RE thought capable of leading SMSC development would be the dialogical approach with examples of successful implementation described by Gates, Ipgrave and Skeie. Marton's phenomenography, is thought to provide a valuable framework to allow the teacher to be appropriately critical in the transmission of spiritual values in schools of a particular religious character as evidenced by Hella's work in Lutheran schools
- …
