4,709 research outputs found
An excess of damped Lyman alpha galaxies near QSOs
We present a sample of 33 damped Lyman alpha systems (DLAs) discovered in the
Sloan Digital Sky Survey (SDSS) whose absorption redshifts (z_abs) are within
6000 km/s of the QSO's systemic redshift (z_sys). Our sample is based on 731
2.5 < z_sys < 4.5 non-broad-absorption-line (non-BAL) QSOs from Data Release 3
(DR3) of the SDSS. We estimate that our search is ~100 % complete for absorbers
with N(HI) >= 2e20 cm^-2. The derived number density of DLAs per unit redshift,
n(z), within v < 6000 km/s is higher (3.5 sigma significance) by almost a
factor of 2 than that of intervening absorbers observed in the SDSS DR3, i.e.
there is evidence for an overdensity of galaxies near the QSOs. This provides a
physical motivation for excluding DLAs at small velocity separations in surveys
of intervening 'field' DLAs. In addition, we find that the overdensity of
proximate DLAs is independent of the radio-loudness of the QSO, consistent with
the environments of radio-loud and radio-quiet QSOs being similar.Comment: Accepted for publication in MNRAS (13 pages, 6 figures
Introducing Mexican needlets for CMB analysis: Issues for practical applications and comparison with standard needlets
Over the last few years, needlets have a emerged as a useful tool for the
analysis of Cosmic Microwave Background (CMB) data. Our aim in this paper is
first to introduce in the CMB literature a different form of needlets, known as
Mexican needlets, first discussed in the mathematical literature by Geller and
Mayeli (2009a,b). We then proceed with an extensive study of the properties of
both standard and Mexican needlets; these properties depend on some parameters
which can be tuned in order to optimize the performance for a given
application. Our second aim in this paper is then to give practical advice on
how to adjust these parameters in order to achieve the best properties for a
given problem in CMB data analysis. In particular we investigate localization
properties in real and harmonic spaces and propose a recipe on how to quantify
the influence of galactic and point source masks on the needlet coefficients.
We also show that for certain parameter values, the Mexican needlets provide a
close approximation to the Spherical Mexican Hat Wavelets (whence their name),
with some advantages concerning their numerical implementation and the
derivation of their statistical properties.Comment: 40 pages, 11 figures, published version, main modification: added
section on more realistic galactic and point source mask
Adaptive Density Estimation on the Circle by Nearly-Tight Frames
This work is concerned with the study of asymptotic properties of
nonparametric density estimates in the framework of circular data. The
estimation procedure here applied is based on wavelet thresholding methods: the
wavelets used are the so-called Mexican needlets, which describe a nearly-tight
frame on the circle. We study the asymptotic behaviour of the -risk
function for these estimates, in particular its adaptivity, proving that its
rate of convergence is nearly optimal.Comment: 30 pages, 3 figure
Current-Carrying Ground States in Mesoscopic and Macroscopic Systems
We extend a theorem of Bloch, which concerns the net orbital current carried
by an interacting electron system in equilibrium, to include mesoscopic
effects. We obtain a rigorous upper bound to the allowed ground-state current
in a ring or disc, for an interacting electron system in the presence of static
but otherwise arbitrary electric and magnetic fields. We also investigate the
effects of spin-orbit and current-current interactions on the upper bound.
Current-current interactions, caused by the magnetic field produced at a point
r by a moving electron at r, are found to reduce the upper bound by an amount
that is determined by the self-inductance of the system. A solvable model of an
electron system that includes current-current interactions is shown to realize
our upper bound, and the upper bound is compared with measurements of the
persistent current in a single ring.Comment: 7 pager, Revtex, 1 figure available from [email protected]
Clustering of Galaxies in a Hierarchical Universe: I. Methods and Results at z=0
We introduce a new technique for following the formation and evolution of
galaxies in cosmological N-body simulations. Dissipationless simulations are
used to track the formation and merging of dark matter halos as a function of
redshift. Simple prescriptions, taken directly from semi-analytic models of
galaxy formation, are adopted for cooling, star formation, supernova feedback
and the merging of galaxies within the halos. This scheme enables us to study
the clustering properties of galaxies and to investigate how selection by type,
colour or luminosity influences the results. In this paper, we study properties
of the galaxy distribution at z=0. These include luminosity functions, colours,
correlation functions, pairwise peculiar velocities, cluster M/L ratios and
star formation rates. We focus on two variants of a CDM cosmology: a high-
density model with Gamma=0.21 (TCDM) and a low-density model with Omega=0.3 and
Lambda=0.7 (LCDM). Both are normalized to reproduce the I-band Tully-Fisher
relation near a circular velocity of 220 km/s. Our results depend strongly both
on this normalization and on the prescriptions for star formation and feedback.
Very different assumptions are required to obtain an acceptable model in the
two cases. For TCDM, efficient feedback is required to suppress the growth of
galaxies low-mass field halos. Without it, there are too many galaxies and the
correlation function turns over below 1 Mpc. For LCDM, feedback must be weak,
otherwise too few L* galaxies are produced and the correlation function is too
steep. Given the uncertainties in modelling some of the key physical processes,
we conclude that it is not yet possible to draw conclusions about the values of
cosmological parameters from studies of this kind. Further work on global star
formation and feedback effects is required to narrow the range of possibilitiesComment: 43 pages, Latex, 16 figures included, 2 additional GIF format
figures, submitted to MNRA
Spectroscopic membership for the populous 300 Myr-old open cluster NGC 3532
NGC 3532 is an extremely rich open cluster embedded in the Galactic disc,
hitherto lacking a comprehensive, documented membership list. We provide
membership probabilities from new radial velocity observations of solar-type
and low-mass stars in NGC 3532, in part as a prelude to a subsequent study of
stellar rotation in the cluster. Using extant optical and infra-red photometry
we constructed a preliminary photometric membership catalogue, consisting of
2230 dwarf and turn-off stars. We selected 1060 of these for observation with
the AAOmega spectrograph at the Anglo-Australian Telescope and 391 stars for
observations with the Hydra-South spectrograph at the Victor Blanco Telescope,
obtaining spectroscopic observations over a decade for 145 stars. We measured
radial velocities for our targets through cross-correlation with model spectra
and standard stars, and supplemented them with radial velocities for 433
additional stars from the literature. We also measured log g, Teff, and [Fe/H]
from the AAOmega spectra. Together with proper motions from Gaia DR2 we find
660 exclusive members. The members are distributed across the whole cluster
sequence, from giant stars to M dwarfs, making NGC 3532 one of the richest
Galactic open clusters known to date, on par with the Pleiades. From further
spectroscopic analysis of 153 dwarf members we find the metallicity to be
marginally sub-solar, with [Fe/H]=-0.07. Exploiting trigonometric parallax
measurements from Gaia DR2 we find a distance of pc. Based on
the membership we provide an empirical cluster sequence in multiple photometric
passbands. A comparison of the photometry of the measured cluster members with
several recent model isochrones enables us to confirm the 300 Myr cluster age.
However, all of the models evince departures from the cluster sequence in
particular regions, especially in the lower mass range. (abridged)Comment: Accepted for publication in A&A. 19 pages, 18 Figures, and 6 Table
Cadmium substitution in miargyrite (AgSbS2) and related phases: An experimental reconnaissance
Chiral persistent currents and magnetic susceptibilities in the parafermion quantum Hall states in the second Landau level with Aharonov-Bohm flux
Using the effective conformal field theory for the quantum Hall edge states
we propose a compact and convenient scheme for the computation of the periods,
amplitudes and temperature behavior of the chiral persistent currents and the
magnetic susceptibilities in the mesoscopic disk version of the Z_k parafermion
quantum Hall states in the second Landau level. Our numerical calculations show
that the persistent currents are periodic in the Aharonov-Bohm flux with period
exactly one flux quantum and have a diamagnetic nature. In the high-temperature
regime their amplitudes decay exponentially with increasing the temperature and
the corresponding exponents are universal characteristics of non-Fermi liquids.
Our theoretical results for these exponents are in perfect agreement with those
extracted from the numerical data and demonstrate that there is in general a
non-trivial contribution coming from the neutral sector. We emphasize the
crucial role of the non-holomorphic factors, first proposed by Cappelli and
Zemba in the context of the conformal field theory partition functions for the
quantum Hall states, which ensure the invariance of the annulus partition
function under the Laughlin spectral flow.Comment: 14 pages, RevTeX4, 7 figures (eps
Splines and Wavelets on Geophysically Relevant Manifolds
Analysis on the unit sphere found many applications in
seismology, weather prediction, astrophysics, signal analysis, crystallography,
computer vision, computerized tomography, neuroscience, and statistics.
In the last two decades, the importance of these and other applications
triggered the development of various tools such as splines and wavelet bases
suitable for the unit spheres , and the
rotation group . Present paper is a summary of some of results of the
author and his collaborators on generalized (average) variational splines and
localized frames (wavelets) on compact Riemannian manifolds. The results are
illustrated by applications to Radon-type transforms on and
.Comment: The final publication is available at http://www.springerlink.co
Electron cyclotron resonance near the axis of the gas-dynamic trap
Propagation of an extraordinary electromagnetic wave in the vicinity of
electron cyclotron resonance surface in an open linear trap is studied
analytically, taking into account inhomogeneity of the magnetic field in
paraxial approximation. Ray trajectories are derived from a reduced dispersion
equation that makes it possible to avoid the difficulty associated with a
transition from large propagation angles to the case of strictly longitudinal
propagation. Our approach is based on the theory, originally developed by the
Zvonkov and Timofeev [1], who used the paraxial approximation for the magnetic
field strength, but did not consider the slope of the magnetic field lines,
which led to considerable error, as has been recently noted by Gospodchikov and
Smolyakova [2]. We have found ray trajectories in analytic form and
demonstrated that the inhomogeneity of both the magnetic field strength and the
field direction can qualitatively change the picture of wave propagation and
significantly affect the efficiency of electron cyclotron heating of a plasma
in a linear magnetic trap. Analysis of the ray trajectories has revealed a
criterion for the resonance point on the axis of the trap to be an attractor
for the ray trajectories. It is also shown that a family of ray trajectories
can still reach the resonance point on the axis if the latter generally repels
the ray trajectories.
As an example, results of general theory are applied to the electron
cyclotron resonance heating experiment which is under preparation on the Gas
Dynamic Trap in the Budker Institute of Nuclear Physics [3]
- …
