28,389 research outputs found
Topological Characterization of Non-Abelian Moore-Read State using Density-Matrix Renormailzation Group
The non-Abelian topological order has attracted a lot of attention for its
fundamental importance and exciting prospect of topological quantum
computation. However, explicit demonstration or identification of the
non-Abelian states and the associated statistics in a microscopic model is very
challenging. Here, based on density-matrix renormalization group calculation,
we provide a complete characterization of the universal properties of bosonic
Moore-Read state on Haldane honeycomb lattice model at filling number
for larger systems, including both the edge spectrum and the bulk anyonic
quasiparticle (QP) statistics. We first demonstrate that there are three
degenerating ground states, for each of which there is a definite anyonic flux
threading through the cylinder. We identify the nontrivial countings for the
entanglement spectrum in accordance with the corresponding conformal field
theory. Through inserting the charge flux, it is found that two of the
ground states can be adiabatically connected through a fermionic
charge- QP being pumped from one edge to the other, while the
ground state in Ising anyon sector evolves back to itself. Furthermore, we
calculate the modular matrices and , which contain
all the information for the anyonic QPs. In particular, the extracted quantum
dimensions, fusion rule and topological spins from modular matrices positively
identify the emergence of non-Abelian statistics following the
Chern-Simons theory.Comment: 5 pages; 3 figure
Probing Dark Energy Dynamics from Current and Future Cosmological Observations
We report the constraints on the dark energy equation-of-state w(z) using the
latest 'Constitution' SNe sample combined with the WMAP5 and SDSS data. Based
on the localized principal component analysis and the model selection criteria,
we find that the LCDM model is generally consistent with the current data, yet
there exists weak hint of the possible dynamics of dark energy. In particular,
a model predicting w(z)-1 at z\in[0.5,0.75),
which means that w(z) crosses -1 in the range of z\in[0.25,0.75), is mildly
favored at 95% confidence level. Given the best fit model for current data as a
fiducial model, we make future forecast from the joint data sets of JDEM,
Planck and LSST, and we find that the future surveys can reduce the error bars
on the w bins by roughly a factor of 10 for a 5-w-bin model.Comment: Accepted by PRD; minor changes from v
Chaplygin Gravitodynamics
We consider a new approach for gravity theory coupled to Chaplygin matter in
which the {\it{relativistic}} formulation of the latter is of crucial
importance. We obtain a novel form of matter with dust like density and negative pressure. We explicitly show that our results are
compatible with a relativistic generalization of the energy conservation
principle, derived here.Comment: Title changed, Revised version,N o change in conclusions, Journal
ref.: MPL A21 (2006)1511-151
The Fractional Quantum Hall States at and and their Non-Abelian Nature
We investigate the nature of the fractional quantum Hall (FQH) state at
filling factor , and its particle-hole conjugate state at ,
with the Coulomb interaction, and address the issue of possible competing
states. Based on a large-scale density-matrix renormalization group (DMRG)
calculation in spherical geometry, we present evidence that the physics of the
Coulomb ground state (GS) at and is captured by the
parafermion Read-Rezayi RR state, . We first establish that the
state at is an incompressible FQH state, with a GS protected by a
finite excitation gap, with the shift in accordance with the RR state. Then, by
performing a finite-size scaling analysis of the GS energies for
with different shifts, we find that the state has the lowest
energy among different competing states in the thermodynamic limit. We find the
fingerprint of topological order in the FQH and
states, based on their entanglement spectrum and topological entanglement
entropy, both of which strongly support their identification with the
state. Furthermore, by considering the shift-free
infinite-cylinder geometry, we expose two topologically-distinct GS sectors,
one identity sector and a second one matching the non-Abelian sector of the
Fibonacci anyonic quasiparticle, which serves as additional evidence for the
state at and .Comment: 12 pages, 8 figure
Millisecond Electron-Phonon Relaxation in Ultrathin Disordered Metal Films at Millikelvin Temperatures
We have measured directly the thermal conductance between electrons and
phonons in ultra-thin Hf and Ti films at millikelvin temperatures. The
experimental data indicate that electron-phonon coupling in these films is
significantly suppressed by disorder. The electron cooling time
follows the -dependence with a record-long value
at . The hot-electron detectors of far-infrared radiation, fabricated
from such films, are expected to have a very high sensitivity. The noise
equivalent power of a detector with the area 1\mum^2 would be
, which is two orders of magnitude smaller than that
of the state-of-the-art bolometers.Comment: 13 pages, including 3 figure
Noisy Classical Field Theories with Two Coupled Fields: Dependence of Escape Rates on Relative Field Stiffnesses
Exit times for stochastic Ginzburg-Landau classical field theories with two
or more coupled classical fields depend on the interval length on which the
fields are defined, the potential in which the fields deterministically evolve,
and the relative stiffness of the fields themselves. The latter is of
particular importance in that physical applications will generally require
different relative stiffnesses, but the effect of varying field stiffnesses has
not heretofore been studied. In this paper, we explore the complete phase
diagram of escape times as they depend on the various problem parameters. In
addition to finding a transition in escape rates as the relative stiffness
varies, we also observe a critical slowing down of the string method algorithm
as criticality is approached.Comment: 16 pages, 10 figure
- …
