1,106 research outputs found
Dark Matter and Dark Forces from a supersymmetric hidden sector
We show that supersymmetric "Dark Force" models with gravity mediation are
viable. To this end, we analyse a simple string-inspired supersymmetric hidden
sector model that interacts with the visible sector via kinetic mixing of a
light Abelian gauge boson with the hypercharge. We include all induced
interactions with the visible sector such as neutralino mass mixing and the
Higgs portal term. We perform a detailed parameter space scan comparing the
produced dark matter relic abundance and direct detection cross sections to
current experiments.Comment: 40 pages, 11 figures comprising 21 plots. 4Mb total size. v2: figures
and references updated; typos removed; some extra explanations added. Matches
version published in PR
Do the clothes make the criminal? The influence of clothing match on identification accuracy in showups
Showups, a single suspect identification, are thought to be a more suggestive procedure than traditional lineups by the U.S. Supreme Court and social science researchers. Previous research typically finds that a clothing match in showup identifications increases false identifications. However, these experiments do not allow for a determination of whether this increase arises from a change in response bias, reduced discriminability, or both. In the present study, participants viewed a mock crime video and made a showup identification with either a clothing match or mismatch. Contrary to prior research, the best discriminability occurred when the guilty and innocent suspects wore clothing that matched the clothing worn during the crime. A clothing match also resulted in a more liberal response bias. The results are consistent with the principle of encoding specificity and the outshining hypothesis, as instantiated in the item, context, ensemble theory. Practical implications are discussed
Inter-Intra Molecular Dynamics as an Iterated Function System
The dynamics of units (molecules) with slowly relaxing internal states is
studied as an iterated function system (IFS) for the situation common in e.g.
biological systems where these units are subjected to frequent collisional
interactions. It is found that an increase in the collision frequency leads to
successive discrete states that can be analyzed as partial steps to form a
Cantor set. By considering the interactions among the units, a self-consistent
IFS is derived, which leads to the formation and stabilization of multiple such
discrete states. The relevance of the results to dynamical multiple states in
biomolecules in crowded conditions is discussed.Comment: 7 pages, 7 figures. submitted to Europhysics Letter
The RCSB Protein Data Bank: views of structural biology for basic and applied research and education.
The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine
The kinetic dark-mixing in the light of CoGENT and XENON100
Several string or GUT constructions motivate the existence of a dark U(1)_D
gauge boson which interacts with the Standard Model only through its kinetic
mixing. We compute the dark matter abundance in such scenario and the
constraints in the light of the recent data from CoGENT, CDMSII and XENON100.
We show in particular that a region with relatively light WIMPS, M_{Z_D}< 40
GeV and a kinetic mixing 10^-4 < delta < 10^-3 is not yet excluded by the last
experimental data and seems to give promising signals in a near future. We also
compute the value of the kinetic mixing needed to explain the
DAMA/CoGENT/CRESST excesses and find that for M_{Z_D}< 30 GeV, delta ~ 10^-3 is
sufficient to fit with the data.Comment: 6 pages, 5figure
Supersymmetry in the shadow of photini
Additional neutral gauge fermions -- "photini" -- arise in string
compactifications as superpartners of U(1) gauge fields. Unlike their vector
counterparts, the photini can acquire weak-scale masses from soft SUSY breaking
and lead to observable signatures at the LHC through mass mixing with the bino.
In this work we investigate the collider consequences of adding photini to the
neutralino sector of the MSSM. Relatively large mixing of one or more photini
with the bino can lead to prompt decays of the lightest ordinary supersymmetric
particle; these extra cascades transfer most of the energy of SUSY decay chains
into Standard Model particles, diminishing the power of missing energy as an
experimental handle for signal discrimination. We demonstrate that the missing
energy in SUSY events with photini is reduced dramatically for supersymmetric
spectra with MSSM neutralinos near the weak scale, and study the effects on
limits set by the leading hadronic SUSY searches at ATLAS and CMS. We find that
in the presence of even one light photino the limits on squark masses from
hadronic searches can be reduced by 400 GeV, with comparable (though more
modest) reduction of gluino mass limits. We also consider potential discovery
channels such as dilepton and multilepton searches, which remain sensitive to
SUSY spectra with photini and can provide an unexpected route to the discovery
of supersymmetry. Although presented in the context of photini, our results
apply in general to theories in which additional light neutral fermions mix
with MSSM gauginos.Comment: 23 pages, 8 figures, references adde
New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range
We survey the phenomenological constraints on abelian gauge bosons having
masses in the MeV to multi-GeV mass range (using precision electroweak
measurements, neutrino-electron and neutrino-nucleon scattering, electron and
muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic
parity violation, low-energy neutron scattering and primordial
nucleosynthesis). We compute their implications for the three parameters that
in general describe the low-energy properties of such bosons: their mass and
their two possible types of dimensionless couplings (direct couplings to
ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue
that gauge bosons with very small couplings to ordinary fermions in this mass
range are natural in string compactifications and are likely to be generic in
theories for which the gravity scale is systematically smaller than the Planck
mass - such as in extra-dimensional models - because of the necessity to
suppress proton decay. Furthermore, because its couplings are weak, in the
low-energy theory relevant to experiments at and below TeV scales the charge
gauged by the new boson can appear to be broken, both by classical effects and
by anomalies. In particular, if the new gauge charge appears to be anomalous,
anomaly cancellation does not also require the introduction of new light
fermions in the low-energy theory. Furthermore, the charge can appear to be
conserved in the low-energy theory, despite the corresponding gauge boson
having a mass. Our results reduce to those of other authors in the special
cases where there is no kinetic mixing or there is no direct coupling to
ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which
appears in JHE
The low energy spectrum of TeO2 bolometers: results and dark matter perspectives for the CUORE-0 and CUORE experiments
We collected 19.4 days of data from four 750 g TeO2 bolometers, and in three
of them we were able to set the energy threshold around 3 keV using a new
analysis technique. We found a background rate ranging from 25 cpd/keV/kg at 3
keV to 2 cpd/keV/kg at 25 keV, and a peak at 4.7 keV. The origin of this peak
is presently unknown, but its presence is confirmed by a reanalysis of 62.7
kg.days of data from the finished CUORICINO experiment. Finally, we report the
expected sensitivities of the CUORE0 (52 bolometers) and CUORE (988 bolometers)
experiments to a WIMP annual modulation signal.Comment: 9 pages, 10 figure
Two-loop RGEs with Dirac gaugino masses
The set of renormalisation group equations to two loop order for general
supersymmetric theories broken by soft and supersoft operators is completed. As
an example, the explicit expressions for the RGEs in a Dirac gaugino extension
of the (N)MSSM are presented.Comment: 10 pages + 24 pages of RGEs in appendix; no figure
- …
