620 research outputs found
Structural and Morphological Study of Nickel Doped Tin Oxide Nanoparticles Synthesized Via Sol-Gel Technique
In the present paper nickel doped tin oxide nanoparticles were synthesized by using simple sol–gel technique. The as-synthesized sample was characterized by means of X-ray powder diffraction (XRD) spectroscopy and Energy-dispersive X-ray spectroscopy (EDX) techniques for its structural analysis. XRD spectrum reveals that all the nanoparticles are highly polycrystalline in nature and five major peaks were
clearly observed. Ni-doped SnO2 crystals existed mainly as tetragonal rutile structure. The average particle size of the nanoparticles was calculated by using the Scherrer formula and it was obtained 20 nm. EDX analysis confirms the presence of Nickel. No other impurities were found. The morphology of the nanoparticles was analyzed by using scanning electron microscope (SEM). The SEM image of the studied nanoparticles confirms the existence of very small, homogeneously distributed, spherical and crystalline nanoparticles
Full Genome Characterization of the Culicoides-Borne Marsupial Orbiviruses: Wallal Virus, Mudjinbarry Virus and Warrego Viruses
Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively
Streamer Propagation as a Pattern Formation Problem: Planar Fronts
Streamers often constitute the first stage of dielectric breakdown in strong
electric fields: a nonlinear ionization wave transforms a non-ionized medium
into a weakly ionized nonequilibrium plasma. New understanding of this old
phenomenon can be gained through modern concepts of (interfacial) pattern
formation. As a first step towards an effective interface description, we
determine the front width, solve the selection problem for planar fronts and
calculate their properties. Our results are in good agreement with many
features of recent three-dimensional numerical simulations.Comment: 4 pages, revtex, 3 ps file
Magnetization of a two-dimensional electron gas with a second filled subband
We have measured the magnetization of a dual-subband two-dimensional electron
gas, confined in a GaAs/AlGaAs heterojunction. In contrast to two-dimensional
electron gases with a single subband, we observe non-1/B-periodic, triangularly
shaped oscillations of the magnetization with an amplitude significantly less
than per electron. All three effects are explained by a
field dependent self-consistent model, demonstrating the shape of the
magnetization is dominated by oscillations in the confining potential.
Additionally, at 1 K, we observe small oscillations at magnetic fields where
Landau-levels of the two different subbands cross.Comment: 4 pages, 4 figure
Splitting of critical energies in the =0 Landau level of graphene
The lifting of the degeneracy of the states from the graphene =0 Landau
level (LL) is investigated through a non-interacting tight-binding model with
random hoppings. A disorder-driven splitting of two bands and of two critical
energies is observed by means of density of states and participation ratio
calculations. The analysis of the probability densities of the states within
the =0 LL provides some insights into the interplay of lattice and disorder
effects on the splitting process. An uneven spatial distribution of the wave
function amplitudes between the two graphene sublattices is found for the
states in between the two split peaks. It is shown that as the splitting is
increased (linear increasing with disorder and square root increasing with
magnetic field), the two split levels also get increasingly broadened, in such
a way that the proportion of the overlapped states keeps approximately constant
for a wide range of disorder or magnetic field variation.Comment: 6 figure
Magnetic effects at the interface between nonmagnetic oxides
The electronic reconstruction at the interface between two insulating oxides
can give rise to a highly-conductive interface. In analogy to this remarkable
interface-induced conductivity we show how, additionally, magnetism can be
induced at the interface between the otherwise nonmagnetic insulating
perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the
interface is found, together with a logarithmic temperature dependence of the
sheet resistance. At low temperatures, the sheet resistance reveals magnetic
hysteresis. Magnetic ordering is a key issue in solid-state science and its
underlying mechanisms are still the subject of intense research. In particular,
the interplay between localized magnetic moments and the spin of itinerant
conduction electrons in a solid gives rise to intriguing many-body effects such
as Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, the Kondo effect, and
carrier-induced ferromagnetism in diluted magnetic semiconductors. The
conducting oxide interface now provides a versatile system to induce and
manipulate magnetic moments in otherwise nonmagnetic materials.Comment: Nature Materials, July issu
Definitive observation of the dark triplet ground state of charged excitons in high magnetic fields
The ground state of negatively charged excitons (trions) in high magnetic
fields is shown to be a dark triplet state, confirming long-standing
theoretical predictions. Photoluminescence (PL), reflection, and PL excitation
spectroscopy of CdTe quantum wells reveal that the dark triplet trion has lower
energy than the singlet trion above 24 Tesla. The singlet-triplet crossover is
"hidden" (i.e., the spectral lines themselves do not cross due to different
Zeeman energies), but is confirmed by temperature-dependent PL above and below
24 T. The data also show two bright triplet states.Comment: 4 figure
The Quality Control of the LHC Continuous Cryostat Interconnections
The interconnections between the Large Hadron Collider (LHC) magnets have required some 40 000 TIG welded joints and 65 000 electrical splices. At the level of single joints and splices, non-destructive techniques find limited application: quality control is based on the qualification of the process and of operators, on the recording of production parameters and on production samples. Visual inspection and process audits were the main techniques used. At the level of an extended chain of joints and splices - from a 53.5 m half-cell to a complete 2.7 km arc sector - quality control is based on vacuum leak tests, electrical tests and RF microwave reflectometry that progressively validated the work performed. Subsequent pressure tests, cryogenic circuits flushing with high pressure helium and cool-downs revealed a few unseen or new defects. This paper presents an overview of the quality control techniques used, seeking lessons applicable to similar large, complex projects
- …
