36,948 research outputs found
Differential Distributions for NLO Analyses of Charged Current Neutrino-Production of Charm
Experimental analyses of charged current deep inelastic charm production --
as observed through dimuon events in neutrino-iron scattering -- measure the
strangeness component of the nucleon sea. A complete analysis requires a Monte
Carlo simulation to account for experimental detector acceptance effects;
therefore, a fully differential theoretical calculation is necessary to provide
complete kinematic information. We investigate the theoretical issues involved
in calculating these differential distributions at Next-Leading-Order (NLO).
Numerical results are presented for typical fixed target kinematics. We present
a corresponding FORTRAN code suitable for experimental NLO analysis.Comment: 19 pages, 4 figure
Uniqueness of Petrov type D spatially inhomogeneous irrotational silent models
The consistency of the constraint with the evolution equations for spatially
inhomogeneous and irrotational silent (SIIS) models of Petrov type I, demands
that the former are preserved along the timelike congruence represented by the
velocity of the dust fluid, leading to \emph{new} non-trivial constraints. This
fact has been used to conjecture that the resulting models correspond to the
spatially homogeneous (SH) models of Bianchi type I, at least for the case
where the cosmological constant vanish. By exploiting the full set of the
constraint equations as expressed in the 1+3 covariant formalism and using
elements from the theory of the spacelike congruences, we provide a direct and
simple proof of this conjecture for vacuum and dust fluid models, which shows
that the Szekeres family of solutions represents the most general class of SIIS
models. The suggested procedure also shows that, the uniqueness of the SIIS of
the Petrov type D is not, in general, affected by the presence of a non-zero
pressure fluid. Therefore, in order to allow a broader class of Petrov type I
solutions apart from the SH models of Bianchi type I, one should consider more
general ``silent'' configurations by relaxing the vanishing of the vorticity
and the magnetic part of the Weyl tensor but maintaining their ``silence''
properties i.e. the vanishing of the curls of and the pressure
.Comment: Latex, 19 pages, no figures;(v2) some clarification remarks and an
appendix are added; (v3) minor changes to match published versio
Strong absorption and selective thermal emission from a mid-infrared metamaterial
We demonstrate thin-film metamaterials with resonances in the mid-infrared
wavelength range. Our structures are numerically modeled and experimentally
characterized by reflection and angularly-resolved thermal emission
spectroscopy. We demonstrate strong and controllable absorption resonances
across the mid-infrared wavelength range. In addition, the polarized thermal
emission from these samples is shown to be highly selective and largely
independent of emission angles from normal to 45 degrees. Experimental results
are compared to numerical models with excellent agreement. Such structures hold
promise for large-area, low-cost metamaterial coatings for control of gray- or
black-body thermal signatures, as well as for possible mid-IR sensing
applications.Comment: The following article has been submitted to Appl. Phys. Lett. After
it is published, it will be found at http://apl.aip.org/. 14 pages including
4 figure page
Recommended from our members
Remote sensing of intertidal morphological change in Morecambe Bay, U.K., between 1991 and 2007
Tidal Flats are important examples of extensive areas of natural environment that remain relatively unaffected by man. Monitoring of tidal flats is required for a variety of purposes. Remote sensing has become an established technique for the measurement of topography over tidal flats. A further requirement is to measure topographic changes in order to measure sediment budgets. To date there have been few attempts to make quantitative estimates of morphological change over tidal flat areas. This paper illustrates the use of remote sensing to measure quantitative and qualitative changes in the tidal flats of Morecambe Bay during the relatively long period 1991–2007. An understanding of the patterns of sediment transport within the Bay is of considerable interest for coastal management and defence purposes. Tidal asymmetry is considered to be the dominant cause of morphological change in the Bay, with the higher currents associated with the flood tide being the main agency moulding the channel system. Quantitative changes were measured by comparing a Digital Elevation Model (DEM) of the intertidal zone formed using the waterline technique applied to satellite Synthetic Aperture Radar (SAR) images from 1991–1994, to a second DEM constructed from airborne laser altimetry data acquired in 2005. Qualitative changes were studied using additional SAR images acquired since 2003. A significant movement of sediment from below Mean Sea Level (MSL) to above MSL was detected by comparing the two Digital Elevation Models, though the proportion of this change that could be ascribed to seasonal effects was not clear. Between 1991 and 2004 there was a migration of the Ulverston channel of the river Leven north-east by about 5 km, followed by the development of a straighter channel to the west, leaving the previous channel decoupled from the river. This is thought to be due to independent tidal and fluvial forcing mechanisms acting on the channel. The results demonstrate the effectiveness of remote sensing for measurement of long-term morphological change in tidal flat areas. An alternative use of waterlines as partial bathymetry for assimilation into a morphodynamic model of the coastal zone is also discussed
Body and canard effects on an attached-flow maneuver wing at Mach 1.62
A wing-body-canard configuration was tested at a Mach number of 1.62 by using both a cambered and an uncambered wing. The cambered wing was designed to produce efficient high lift by using attached supercritical crossflow and was originally tested as an isolated wing. The uncambered wing has the same planform and essentially the same thickness distribution as the cambered wing. The experiment determined the effects of a body and canards on both wings. The experimental data showed that both the body and the canards influenced the wing pressure levels, but that the attached supercritical crossflow, which was achieved in the isolated cambered-wing test, was maintained in the presence of a body and canards. Tables of experimental pressure, force, and moment data are included, as well as photographs of oil flow patterns on the upper surface
Supersonic, nonlinear, attached-flow wing design for high lift with experimental validation
Results of the experimental validation are presented for the three dimensional cambered wing which was designed to achieve attached supercritical cross flow for lifting conditions typical of supersonic maneuver. The design point was a lift coefficient of 0.4 at Mach 1.62 and 12 deg angle of attack. Results from the nonlinear full potential method are presented to show the validity of the design process along with results from linear theory codes. Longitudinal force and moment data and static pressure data were obtained in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.58, 1.62, 1.66, 1.70, and 2.00 over an angle of attack range of 0 to 14 deg at a Reynolds number of 2.0 x 10 to the 6th power per foot. Oil flow photographs of the upper surface were obtained at M = 1.62 for alpha approx. = 8, 10, 12, and 14 deg
Magnetic circular dichroism spectra from resonant and damped coupled cluster response theory
A computational expression for the Faraday A term of magnetic circular
dichroism (MCD) is derived within coupled cluster response theory and
alternative computational expressions for the B term are discussed. Moreover,
an approach to compute the (temperature-independent) MCD ellipticity in the
context of coupled cluster damped response is presented, and its equivalence
with the stick-spectrum approach in the limit of infinite lifetimes is
demonstrated. The damped response approach has advantages for molecular systems
or spectral ranges with a high density of states. Illustrative results are
reported at the coupled cluster singles and doubles level and compared to
time-dependent density functional theory results.Comment: Submitted to J. Chem. Phys. on May 10, 202
Pressure and force data for a flat wing and a warped conical wing having a shockless recompression at Mach 1.62
A conical nonlinear flow computer code was used to design a warped (cambered) wing which would produce a supercritical expansion and shockless recompression of the crossflow at a lift coefficient of 0.457, an angle of attack of 10 deg, and a Mach number of 1.62. This cambered wing and a flat wing the same thickness distribution were tested over a range of Mach numbers from 1.6 to 2.0. For both models the forward 60 percent is purely conical geometry. Results obtained with the cambered wing demonstrated the design features of a supercritical expansion and a shockless recompression, whereas results obtained with the flat wing indicated the presence of crossflow shocks. Tables of experimental pressure, force, and moment data are included, as well as selected oil flow photographs
Hybrid Superconductor-Quantum Point Contact Devices using InSb Nanowires
Proposals for studying topological superconductivity and Majorana bound
states in nanowires proximity coupled to superconductors require that transport
in the nanowire is ballistic. Previous work on hybrid nanowire-superconductor
systems has shown evidence for Majorana bound states, but these experiments
were also marked by disorder, which disrupts ballistic transport. In this
letter, we demonstrate ballistic transport in InSb nanowires interfaced
directly with superconducting Al by observing quantized conductance at
zero-magnetic field. Additionally, we demonstrate that the nanowire is
proximity coupled to the superconducting contacts by observing Andreev
reflection. These results are important steps for robustly establishing
topological superconductivity in InSb nanowires
- …
