194 research outputs found
Generalized boson algebra and its entangled bipartite coherent states
Starting with a given generalized boson algebra U_(h(1)) known as the
bosonized version of the quantum super-Hopf U_q[osp(1/2)] algebra, we employ
the Hopf duality arguments to provide the dually conjugate function algebra
Fun_(H(1)). Both the Hopf algebras being finitely generated, we produce a
closed form expression of the universal T matrix that caps the duality and
generalizes the familiar exponential map relating a Lie algebra with its
corresponding group. Subsequently, using an inverse Mellin transform approach,
the coherent states of single-node systems subject to the U_(h(1)) symmetry
are found to be complete with a positive-definite integration measure.
Nonclassical coalgebraic structure of the U_(h(1)) algebra is found to
generate naturally entangled coherent states in bipartite composite systems.Comment: 15pages, no figur
On the evaluation formula for Jack polynomials with prescribed symmetry
The Jack polynomials with prescribed symmetry are obtained from the
nonsymmetric polynomials via the operations of symmetrization,
antisymmetrization and normalization. After dividing out the corresponding
antisymmetric polynomial of smallest degree, a symmetric polynomial results. Of
interest in applications is the value of the latter polynomial when all the
variables are set equal. Dunkl has obtained this evaluation, making use of a
certain skew symmetric operator. We introduce a simpler operator for this
purpose, thereby obtaining a new derivation of the evaluation formula. An
expansion formula of a certain product in terms of Jack polynomials with
prescribed symmetry implied by the evaluation formula is used to derive a
generalization of a constant term identity due to Macdonald, Kadell and Kaneko.
Although we don't give the details in this work, the operator introduced here
can be defined for any reduced crystallographic root system, and used to
provide an evaluation formula for the corresponding Heckman-Opdam polynomials
with prescribed symmetry.Comment: 18 page
Coherent states for the hydrogen atom: discrete and continuous spectra
We construct the systems of generalised coherent states for the discrete and
continuous spectra of the hydrogen atom. These systems are expressed in
elementary functions and are invariant under the (discrete spectrum)
and (continuous spectrum) subgroups of the dynamical symmetry group
of the hydrogen atom. Both systems of coherent states are particular
cases of the kernel of integral operator which interwines irreducible
representations of the group.Comment: 15 pages, LATEX, minor sign corrections, to appear in J.Phys.
Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms
This paper begins with an examination of the revival structure and long-term
evolution of Rydberg wave packets for hydrogen. We show that after the initial
cycle of collapse and fractional/full revivals, which occurs on the time scale
, a new sequence of revivals begins. We find that the structure of
the new revivals is different from that of the fractional revivals. The new
revivals are characterized by periodicities in the motion of the wave packet
with periods that are fractions of the revival time scale . These
long-term periodicities result in the autocorrelation function at times greater
than having a self-similar resemblance to its structure for times
less than . The new sequence of revivals culminates with the
formation of a single wave packet that more closely resembles the initial wave
packet than does the full revival at time , i.e., a superrevival
forms. Explicit examples of the superrevival structure for both circular and
radial wave packets are given. We then study wave packets in alkali-metal
atoms, which are typically used in experiments. The behavior of these packets
is affected by the presence of quantum defects that modify the hydrogenic
revival time scales and periodicities. Their behavior can be treated
analytically using supersymmetry-based quantum-defect theory. We illustrate our
results for alkali-metal atoms with explicit examples of the revival structure
for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199
Keplerian Squeezed States and Rydberg Wave Packets
We construct minimum-uncertainty solutions of the three-dimensional
Schr\"odinger equation with a Coulomb potential. These wave packets are
localized in radial and angular coordinates and are squeezed states in three
dimensions. They move on elliptical keplerian trajectories and are appropriate
for the description of the corresponding Rydberg wave packets, the production
of which is the focus of current experimental effort. We extend our analysis to
incorporate the effects of quantum defects in alkali-metal atoms, which are
used in experiments.Comment: accepted for publication in Physical Review
Radial Squeezed States and Rydberg Wave Packets
We outline an analytical framework for the treatment of radial Rydberg wave
packets produced by short laser pulses in the absence of external electric and
magnetic fields. Wave packets of this type are localized in the radial
coordinates and have p-state angular distributions. We argue that they can be
described by a particular analytical class of squeezed states, called radial
squeezed states. For hydrogenic Rydberg atoms, we discuss the time evolution of
the corresponding hydrogenic radial squeezed states. They are found to undergo
decoherence and collapse, followed by fractional and full revivals. We also
present their uncertainty product and uncertainty ratio as functions of time.
Our results show that hydrogenic radial squeezed states provide a suitable
analytical description of hydrogenic Rydberg atoms excited by short-pulsed
laser fields.Comment: published in Physical Review
Elliptical Squeezed States and Rydberg Wave Packets
We present a theoretical construction for closest-to-classical wave packets
localized in both angular and radial coordinates and moving on a keplerian
orbit. The method produces a family of elliptical squeezed states for the
planar Coulomb problem that minimize appropriate uncertainty relations in
radial and angular coordinates. The time evolution of these states is studied
for orbits with different semimajor axes and eccentricities. The elliptical
squeezed states may be useful for a description of the motion of Rydberg wave
packets excited by short-pulsed lasers in the presence of external fields,
which experiments are attempting to produce. We outline an extension of the
method to include certain effects of quantum defects appearing in the
alkali-metal atoms used in experiments.Comment: published in Phys. Rev. A, vol. 52, p. 2234, Sept. 199
- …
