539 research outputs found
Magnetically Catalyzed Fusion
We calculate the reaction cross-sections for the fusion of hydrogen and
deuterium in strong magnetic fields as are believed to exist in the atmospheres
of neutron stars. We find that in the presence of a strong magnetic field (B
\gsim 10^{12}G), the reaction rates are many orders of magnitude higher than
in the unmagnetized case. The fusion of both protons and deuterons are
important over a neutron star's lifetime for ultrastrong magnetic fields (G). The enhancement may have dramatic effects on thermonuclear
runaways and bursts on the surfaces of neutron stars.Comment: 13 pages, 6 figure
Lithium in strong magnetic fields
The electronic structure of the lithium atom in a strong magnetic field 0 <=
gamma <= 10 is investigated. Our computational approach is a full configuration
interaction method based on a set of anisotropic Gaussian orbitals that is
nonlinearly optimized for each field strength. Accurate results for the total
energies and one-electron ionization energies for the ground and several
excited states for each of the symmetries ^20^+, ^2(-1)^+, ^4(-1)^+, ^4(-1)^-,
^2(-2)^+, ^4(-2)^+, are presented. The behaviour of these energies
as a function of the field strength is discussed and classified. Transition
wave lengths for linear and circular polarized transitions are presented as
well.Comment: 12 pages, 13 figures, accepted for publication in Phys. Rev.
Diffusion Monte Carlo calculations for the ground states of atoms and ions in neutron star magnetic fields
The diffusion quantum Monte Carlo method is extended to solve the old
theoretical physics problem of many-electron atoms and ions in intense magnetic
fields. The feature of our approach is the use of adiabatic approximation wave
functions augmented by a Jastrow factor as guiding functions to initialize the
quantum Monte Carlo prodecure. We calcula te the ground state energies of atoms
and ions with nuclear charges from Z= 2, 3, 4, ..., 26 for magnetic field
strengths relevant for neutron stars.Comment: 6 pages, 1 figure, proceedings of the "9th International Conference
on Path Integrals - New Trends and Perspectives", Max-Planck-Institut fur
Physik komplexer Systeme, Dresden, Germany, September 23 - 28, 2007, to be
published as a book by World Scientific, Singapore (2008
Using structure-based organic chemistry online tutorials with automated correction for student practice and review
This article describes the development and implementation of an open-access organic chemistry question bank for online tutorials and assessments at University College Cork and Dublin Institute of Technology. SOCOT (structure-based organic chemistry online tutorials) may be used to supplement traditional small-group tutorials, thereby allowing students to develop essential problem-solving skills in organic chemistry. This online approach may be used for both formative and summative assessment. Students complete one problem set weekly or fortnightly, which consists of a number of questions of varying difficulty. A wide range of question types is possible; for example, prediction of reaction products, identification of reaction intermediates or reagents, and retrosynthetic analyses. Questions involving stereochemistry may be also be incorporated. The implementation is described, along with several sample questions and advice for creating questions. This approach is suitable for all levels of undergraduates, from introductory nonmajors to final-year chemistry students. Student feedback was overwhelmingly positive, and in particular, students found SOCOT to be a quite useful tool for review purposes. Our approach uses MarvinSketch, which is free for academic purposes, and the SMILES algorithm, which converts chemical structures into a text string and is compatible with any learning management system
The helium atom in a strong magnetic field
We investigate the electronic structure of the helium atom in a magnetic
field b etween B=0 and B=100a.u. The atom is treated as a nonrelativistic
system with two interactin g electrons and a fixed nucleus. Scaling laws are
provided connecting the fixed-nucleus Hamiltonia n to the one for the case of
finite nuclear mass. Respecting the symmetries of the electronic Ham iltonian
in the presence of a magnetic field, we represent this Hamiltonian as a matrix
with res pect to a two-particle basis composed of one-particle states of a
Gaussian basis set. The corresponding generalized eigenvalue problem is solved
numerically, providing in the present paper results for vanish ing magnetic
quantum number M=0 and even or odd z-parity, each for both singlet and triplet
spin symmetry. Total electronic energies of the ground state and the first few
excitations in each su bspace as well as their one-electron ionization energies
are presented as a function of the magnetic fie ld, and their behaviour is
discussed. Energy values for electromagnetic transitions within the M=0 sub
space are shown, and a complete table of wavelengths at all the detected
stationary points with respect to their field dependence is given, thereby
providing a basis for a comparison with observed ab sorption spectra of
magnetic white dwarfs.Comment: 21 pages, 4 Figures, acc.f.publ.in J.Phys.
Hydrogen and Helium Atoms and Molecules in an Intense Magnetic Field
We calculate the atomic structure of hydrogen and helium, atoms and molecules
in an intense magnetic field, analytically and numerically with a judiciously
chosen basis.Comment: 16 pages, 5 figures, to appear in Phys. Rev.
H^+_2$ in a strong magnetic field described via a solvable model
We consider the hydrogen molecular ion in the presence of a strong
homogeneous magnetic field. In this regime, the effective Hamiltonian is almost
one dimensional with a potential energy which looks like a sum of two Dirac
delta functions. This model is solvable, but not close enough to our exact
Hamiltonian for relevant strenght of the magnnetic field. However we show that
the correct values of the equilibrium distance as well as the binding energy of
the ground state of the ion, can be obtained when incorporating perturbative
corrections up to second order. Finally, we show that exists for
sufficiently large magnetic fields
Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields
Using a Hartree-Fock mesh method and a configuration interaction approach
based on a generalized Gaussian basis set we investigate the behaviour of the
exchange and correlation energies of small atoms and molecules, namely th e
helium and lithium atom as well as the hydrogen molecule, in the presence of a
magnetic field covering the regime B=0-100a.u. In general the importance of the
exchange energy to the binding properties of at oms or molecules increases
strongly with increasing field strength. This is due to the spin-flip
transitions and in particular due to the contributions of the tightly bound
hydrogenic state s which are involved in the corresponding ground states of
different symmetries. In contrast to the exchange energy the correlation energy
becomes less relevant with increasing field strength. This holds for the
individual configurations constituting the ground state and for the crossovers
of the global ground state.Comment: 4 Figures acc.f.publ.in Phys.Rev.
Ion Collisions in Very Strong Electric Fields
A Classical Trajectory Monte Carlo (CTMC) simulation has been made of
processes of charge exchange and ionization between an hydrogen atom and fully
stripped ions embedded in very strong static electric fields (
V/m), which are thought to exist in cosmic and laser--produced plasmas.
Calculations show that the presence of the field affects absolute values of the
cross sections, enhancing ionization and reducing charge exchange. Moreover,
the overall effect depends upon the relative orientation between the field and
the nuclear motion. Other features of a null-field situation, such as scaling
laws, are revisited.Comment: Latex, 13 pages, 11 figures (available upon request), to be published
in Journal of Physics
Complex and unexpected dynamics in simple genetic regulatory networks
Peer reviewedPublisher PD
- …
