1,854 research outputs found
Automatic Environmental Sound Recognition: Performance versus Computational Cost
In the context of the Internet of Things (IoT), sound sensing applications
are required to run on embedded platforms where notions of product pricing and
form factor impose hard constraints on the available computing power. Whereas
Automatic Environmental Sound Recognition (AESR) algorithms are most often
developed with limited consideration for computational cost, this article seeks
which AESR algorithm can make the most of a limited amount of computing power
by comparing the sound classification performance em as a function of its
computational cost. Results suggest that Deep Neural Networks yield the best
ratio of sound classification accuracy across a range of computational costs,
while Gaussian Mixture Models offer a reasonable accuracy at a consistently
small cost, and Support Vector Machines stand between both in terms of
compromise between accuracy and computational cost
Self-localized impurities embedded in a one dimensional Bose-Einstein condensate and their quantum fluctuations
We consider the self-localization of neutral impurity atoms in a
Bose-Einstein condensate in a 1D model. Within the strong coupling approach, we
show that the self-localized state exhibits parametric soliton behavior. The
corresponding stationary states are analogous to the solitons of non-linear
optics and to the solitonic solutions of the Schroedinger-Newton equation
(which appears in models that consider the connection between quantum mechanics
and gravitation). In addition, we present a Bogoliubov-de-Gennes formalism to
describe the quantum fluctuations around the product state of the strong
coupling description. Our fluctuation calculations yield the excitation
spectrum and reveal considerable corrections to the strong coupling
description. The knowledge of the spectrum allows a spectroscopic detection of
the impurity self-localization phenomenon.Comment: 7 pages, 5 figure
Self-localization of a small number of Bose particles in a superfluid Fermi system
We consider self-localization of a small number of Bose particles immersed in
a large homogeneous superfluid mixture of fermions in three and one dimensional
spaces. Bosons distort the density of surrounding fermions and create a
potential well where they can form a bound state analogous to a small polaron
state. In the three dimensional volume we observe the self-localization for
repulsive interactions between bosons and fermions. In the one dimensional case
bosons self-localize as well as for attractive interactions forming, together
with a pair of fermions at the bottom of the Fermi sea, a vector soliton. We
analyze also thermal effects and show that small non-zero temperature affects
the pairing function of the Fermi-subsystem and has little influence on the
self-localization phenomena.Comment: 7 pages, 7 fiqures, improved versio
Many-body Anderson localization in one dimensional systems
We show, using quasi-exact numerical simulations, that Anderson localization
of one-dimensional particles in a disordered potential survives in the presence
of attractive interaction between particles. The localization length of the
composite particle can be computed analytically for weak disorder and is in
good agreement with the quasi-exact numerical observations using Time Evolving
Block Decimation. Our approach allows for simulation of the entire experiment
including the final measurement of all atom positions.Comment: 12pp, 5 fig, version accepted in NJ
Solitons in coupled atomic-molecular Bose-Einstein condensates in a trap
We consider coupled atomic-molecular Bose-Einstein condensate system in a
quasi-one-dimensional trap. In the vicinity of a Feshbach resonance the system
can reveal soliton-like behavior. We analyze bright soliton solutions for the
system in the trap and in the presence of the interactions between particles.
We show that with increasing number of particles in the system two bright
soliton solutions start resembling dark soliton profiles known in an atomic
Bose-Einstein condensate with repulsive interactions between atoms. We analyze
also methods for experimental preparation and detection of the soliton states.Comment: 7 pages, 7 figures, published versio
Insensitivity of flavoured leptogenesis to low energy CP violation
If the baryon asymmetry of the Universe is produced by leptogenesis, CP
violation is required in the lepton sector. In the seesaw extension of the
Standard Model with three hierarchical right-handed neutrinos, we show that the
baryon asymmetry is insensitive to the PMNS phases: thermal leptogenesis can
work for any value of the observable phases. This result was well-known when
there are no flavour effects in leptogenesis; we show that it remains true when
flavour effects are included.Comment: 4 pages, 1 figure; version accepted for publication, added
explanations, notation clarifie
Dynamic Visual Abstraction of Soccer Movement
Trajectory-based visualization of coordinated movement data within a bounded area, such as player and ball movement within a soccer pitch, can easily result in visual crossings, overplotting, and clutter. Trajectory abstraction can help to cope with these issues, but it is a challenging problem to select the right level of abstraction (LoA) for a given data set and analysis task. We present a novel dynamic approach that combines trajectory simplification and clustering techniques with the goal to support interpretation and understanding of movement patterns. Our technique provides smooth transitions between different abstraction types that can be computed dynamically and on-the-fly. This enables the analyst to effectively navigate and explore the space of possible abstractions in large trajectory data sets. Additionally, we provide a proof of concept for supporting the analyst in determining the LoA semi-automatically with a recommender system. Our approach is illustrated and evaluated by case studies, quantitative measures, and expert feedback. We further demonstrate that it allows analysts to solve a variety of analysis tasks in the domain of soccer
Localization of solitons: linear response of the mean-field ground state to weak external potentials
Two aspects of bright matter-wave solitons in weak external potentials are
discussed. First, we briefly review recent results on the Anderson localization
of an entire soliton in disordered potentials [Sacha et al. PRL 103, 210402
(2009)], as a paradigmatic showcase of genuine quantum dynamics beyond simple
perturbation theory. Second, we calculate the linear response of the mean-field
soliton shape to a weak, but otherwise arbitrary external potential, with a
detailed application to lattice potentials.Comment: Selected paper presented at the 2010 Spring Meeting of the Quantum
Optics and Photonics Section of the German Physical Society. V2: minor
changes, published versio
Routes towards Anderson-Like localization of Bose-Einstein condensates in disordered optical lattices
We investigate, both experimentally and theoretically, possible routes
towards Anderson-like localization of Bose-Einstein condensates in disordered
potentials. The dependence of this quantum interference effect on the nonlinear
interactions and the shape of the disorder potential is investigated.
Experiments with an optical lattice and a superimposed disordered potential
reveal the lack of Anderson localization. A theoretical analysis shows that
this absence is due to the large length scale of the disorder potential as well
as its screening by the nonlinear interactions. Further analysis shows that
incommensurable superlattices should allow for the observation of the
cross-over from the nonlinear screening regime to the Anderson localized case
within realistic experimental parameters.Comment: 4 pages to appear in Phys. Rev. Let
Images of the Dark Soliton in a Depleted Condensate
The dark soliton created in a Bose-Einstein condensate becomes grey in course
of time evolution because its notch fills up with depleted atoms. This is the
result of quantum mechanical calculations which describes output of many
experimental repetitions of creation of the stationary soliton, and its time
evolution terminated by a destructive density measurement. However, such a
description is not suitable to predict the outcome of a single realization of
the experiment were two extreme scenarios and many combinations thereof are
possible: one will see (1) a displaced dark soliton without any atoms in the
notch, but with a randomly displaced position, or (2) a grey soliton with a
fixed position, but a random number of atoms filling its notch. In either case
the average over many realizations will reproduce the mentioned quantum
mechanical result. In this paper we use N-particle wavefunctions, which follow
from the number-conserving Bogoliubov theory, to settle this issue.Comment: 8 pages, 6 figures, references added in version accepted for
publication in J. Phys.
- …
