1,854 research outputs found

    Automatic Environmental Sound Recognition: Performance versus Computational Cost

    Get PDF
    In the context of the Internet of Things (IoT), sound sensing applications are required to run on embedded platforms where notions of product pricing and form factor impose hard constraints on the available computing power. Whereas Automatic Environmental Sound Recognition (AESR) algorithms are most often developed with limited consideration for computational cost, this article seeks which AESR algorithm can make the most of a limited amount of computing power by comparing the sound classification performance em as a function of its computational cost. Results suggest that Deep Neural Networks yield the best ratio of sound classification accuracy across a range of computational costs, while Gaussian Mixture Models offer a reasonable accuracy at a consistently small cost, and Support Vector Machines stand between both in terms of compromise between accuracy and computational cost

    Self-localized impurities embedded in a one dimensional Bose-Einstein condensate and their quantum fluctuations

    Full text link
    We consider the self-localization of neutral impurity atoms in a Bose-Einstein condensate in a 1D model. Within the strong coupling approach, we show that the self-localized state exhibits parametric soliton behavior. The corresponding stationary states are analogous to the solitons of non-linear optics and to the solitonic solutions of the Schroedinger-Newton equation (which appears in models that consider the connection between quantum mechanics and gravitation). In addition, we present a Bogoliubov-de-Gennes formalism to describe the quantum fluctuations around the product state of the strong coupling description. Our fluctuation calculations yield the excitation spectrum and reveal considerable corrections to the strong coupling description. The knowledge of the spectrum allows a spectroscopic detection of the impurity self-localization phenomenon.Comment: 7 pages, 5 figure

    Self-localization of a small number of Bose particles in a superfluid Fermi system

    Full text link
    We consider self-localization of a small number of Bose particles immersed in a large homogeneous superfluid mixture of fermions in three and one dimensional spaces. Bosons distort the density of surrounding fermions and create a potential well where they can form a bound state analogous to a small polaron state. In the three dimensional volume we observe the self-localization for repulsive interactions between bosons and fermions. In the one dimensional case bosons self-localize as well as for attractive interactions forming, together with a pair of fermions at the bottom of the Fermi sea, a vector soliton. We analyze also thermal effects and show that small non-zero temperature affects the pairing function of the Fermi-subsystem and has little influence on the self-localization phenomena.Comment: 7 pages, 7 fiqures, improved versio

    Many-body Anderson localization in one dimensional systems

    Get PDF
    We show, using quasi-exact numerical simulations, that Anderson localization of one-dimensional particles in a disordered potential survives in the presence of attractive interaction between particles. The localization length of the composite particle can be computed analytically for weak disorder and is in good agreement with the quasi-exact numerical observations using Time Evolving Block Decimation. Our approach allows for simulation of the entire experiment including the final measurement of all atom positions.Comment: 12pp, 5 fig, version accepted in NJ

    Solitons in coupled atomic-molecular Bose-Einstein condensates in a trap

    Full text link
    We consider coupled atomic-molecular Bose-Einstein condensate system in a quasi-one-dimensional trap. In the vicinity of a Feshbach resonance the system can reveal soliton-like behavior. We analyze bright soliton solutions for the system in the trap and in the presence of the interactions between particles. We show that with increasing number of particles in the system two bright soliton solutions start resembling dark soliton profiles known in an atomic Bose-Einstein condensate with repulsive interactions between atoms. We analyze also methods for experimental preparation and detection of the soliton states.Comment: 7 pages, 7 figures, published versio

    Insensitivity of flavoured leptogenesis to low energy CP violation

    Full text link
    If the baryon asymmetry of the Universe is produced by leptogenesis, CP violation is required in the lepton sector. In the seesaw extension of the Standard Model with three hierarchical right-handed neutrinos, we show that the baryon asymmetry is insensitive to the PMNS phases: thermal leptogenesis can work for any value of the observable phases. This result was well-known when there are no flavour effects in leptogenesis; we show that it remains true when flavour effects are included.Comment: 4 pages, 1 figure; version accepted for publication, added explanations, notation clarifie

    Dynamic Visual Abstraction of Soccer Movement

    Get PDF
    Trajectory-based visualization of coordinated movement data within a bounded area, such as player and ball movement within a soccer pitch, can easily result in visual crossings, overplotting, and clutter. Trajectory abstraction can help to cope with these issues, but it is a challenging problem to select the right level of abstraction (LoA) for a given data set and analysis task. We present a novel dynamic approach that combines trajectory simplification and clustering techniques with the goal to support interpretation and understanding of movement patterns. Our technique provides smooth transitions between different abstraction types that can be computed dynamically and on-the-fly. This enables the analyst to effectively navigate and explore the space of possible abstractions in large trajectory data sets. Additionally, we provide a proof of concept for supporting the analyst in determining the LoA semi-automatically with a recommender system. Our approach is illustrated and evaluated by case studies, quantitative measures, and expert feedback. We further demonstrate that it allows analysts to solve a variety of analysis tasks in the domain of soccer

    Localization of solitons: linear response of the mean-field ground state to weak external potentials

    Full text link
    Two aspects of bright matter-wave solitons in weak external potentials are discussed. First, we briefly review recent results on the Anderson localization of an entire soliton in disordered potentials [Sacha et al. PRL 103, 210402 (2009)], as a paradigmatic showcase of genuine quantum dynamics beyond simple perturbation theory. Second, we calculate the linear response of the mean-field soliton shape to a weak, but otherwise arbitrary external potential, with a detailed application to lattice potentials.Comment: Selected paper presented at the 2010 Spring Meeting of the Quantum Optics and Photonics Section of the German Physical Society. V2: minor changes, published versio

    Routes towards Anderson-Like localization of Bose-Einstein condensates in disordered optical lattices

    Full text link
    We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the cross-over from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.Comment: 4 pages to appear in Phys. Rev. Let

    Images of the Dark Soliton in a Depleted Condensate

    Full text link
    The dark soliton created in a Bose-Einstein condensate becomes grey in course of time evolution because its notch fills up with depleted atoms. This is the result of quantum mechanical calculations which describes output of many experimental repetitions of creation of the stationary soliton, and its time evolution terminated by a destructive density measurement. However, such a description is not suitable to predict the outcome of a single realization of the experiment were two extreme scenarios and many combinations thereof are possible: one will see (1) a displaced dark soliton without any atoms in the notch, but with a randomly displaced position, or (2) a grey soliton with a fixed position, but a random number of atoms filling its notch. In either case the average over many realizations will reproduce the mentioned quantum mechanical result. In this paper we use N-particle wavefunctions, which follow from the number-conserving Bogoliubov theory, to settle this issue.Comment: 8 pages, 6 figures, references added in version accepted for publication in J. Phys.
    corecore