3,985 research outputs found

    Planetary Microlensing: Present Status and Long-term Goals

    Full text link
    Massive gravitational microlensing programs were begun about a decade ago as a means to search for compact baryonic dark matter in the Galaxy, but before the first events were detected the technique was also proposed as a means of detecting extra-solar planets in our Galaxy. Current microlensing planet searches, which have been underway for four years, are sensitive to jovian-mass planets orbiting a few to several AU from their parent Galactic stars. Within two years, sufficient data should be in hand to characterize or meaningfully constrain the frequency of massive planets in this range of parameter space, nicely complementing information about planets at smaller orbital radii now being provided by radial velocity searches. In principle, the technique could be pushed to smaller planetary masses, but only if a larger number of faint microlensed sources can be monitored with higher precision and temporal sampling. The VST on Paranal, with spectroscopic follow-up with the VLT, may be the ideal instrument for such an ambitious program.Comment: Invited Review at VLT Opening Symposium, Antofagasta, Chile, March 1999. To appear in the Springer-Verlag series ``ESO Astrophysics Symposia'

    The Shape of Dark Matter Halos

    Get PDF
    Techniques for inferring the radial and geometric form of dark matter halos and the results they have produced to date are reviewed. Dark halos appear to extend to at least ~50 kpc with total enclosed masses that rise linearly with radius R. Whether this behavior can be extrapolated to distances as large as 200 kpc and beyond is controversial; results at this radius are model-dependent. Observationally, the geometrical form of the dark halo can be characterized by the equatorial axis ratio b/a (ovalness) and vertical-to-equatorial axis ratio c/a (flattening) of the total density. Different techniques consistently yield b/a > 0.7 (and thus b/a > 0.9 for the potential) at R~20 kpc, with more axisymmetric values, b/a >~ 0.8, being more likely. Results are less consistent for the vertical flattening, perhaps due to the difference in the spatial regions probed by different techniques or inappropriate assumptions. Techniques that probe furthest from the stellar plane z~15 kpc consistently implicate substantially flattened c/a = 0.5 +/- 0.2 dark halos. These axis ratios are in acceptable agreement with expectations from N-body simulations of cold dark matter mixed with ~10% dissipational gas.Comment: Invited Review to appear in Galaxy Dynamics, 1999, eds. D. Merritt, J.A. Sellwood and M. Valluri, ASP, LaTex using paspconf.sty, 3 figures in 5 postscript file

    Another Flattened Dark Halo: Plar Ring Galaxy A0136-0801

    Full text link
    Knowledge of the shape of dark matter halos is critical to our understanding of galaxy formation, dynamics, and of the nature of dark matter itself. Polar ring galaxies (PRGs) --- early-type galaxies defined by their outer rings of gas, dust and stars on orbits nearly perpendicular to those of the central host --- provide a rare probe of the vertical-to-radial axis ratio (qρ=c/a) (q_{\rho} = c/a) of dark halos. We present a Fabry-Perot velocity field for the Hα\alpha gas in the kinematically-confirmed PRG \gal. By comparing ring orbits evolved in a generalized mass model to the observed ring velocity field and morphology of \gal, we conclude that qρ0.5q_\rho \sim 0.5 and rule out a spherical geometry.Comment: uuencoded gz-compressed file with figures include

    SuperLupus: A Deep, Long Duration Transit Survey

    Full text link
    SuperLupus is a deep transit survey monitoring a Galactic Plane field in the Southern hemisphere. The project is building on the successful Lupus Survey, and will double the number of images of the field from 1700 to 3400, making it one of the longest duration deep transit surveys. The immediate motivation for this expansion is to search for longer period transiting planets (5-8 days) and smaller radii planets. It will also provide near complete recovery for the shorter period planets (1-3 days). In March, April, and May 2008 we obtained the new images and work is currently in progress reducing these new data.Comment: 3 pages, 2 figures, to appear in the Proceedings of IAU Symposium 253, 2008: Transiting Planet

    A review of data visualization: opportunities in manufacturing sequence management.

    No full text
    Data visualization now benefits from developments in technologies that offer innovative ways of presenting complex data. Potentially these have widespread application in communicating the complex information domains typical of manufacturing sequence management environments for global enterprises. In this paper the authors review the visualization functionalities, techniques and applications reported in literature, map these to manufacturing sequence information presentation requirements and identify the opportunities available and likely development paths. Current leading-edge practice in dynamic updating and communication with suppliers is not being exploited in manufacturing sequence management; it could provide significant benefits to manufacturing business. In the context of global manufacturing operations and broad-based user communities with differing needs served by common data sets, tool functionality is generally ahead of user application

    An a priori investigation of astrophysical false positives in ground-based transiting planet surveys

    Full text link
    Astrophysical false positives due to stellar eclipsing binaries pose one of the greatest challenges to ground-based surveys for transiting Hot Jupiters. We have used known properties of multiple star systems and Hot Jupiter systems to predict, a priori, the number of such false detections and the number of genuine planet detections recovered in two hypothetical but realistic ground-based transit surveys targeting fields close to the galactic plane (b~10 degrees): a shallow survey covering a magnitude range 10<V<13, and a deep survey covering a magnitude range 15<V<19. Our results are consistent with the commonly-reported experience of false detections outnumbering planet detections by a factor of ~10 in shallow surveys, while in our synthetic deep survey we find ~1-2 false detections for every planet detection. We characterize the eclipsing binary configurations that are most likely to cause false detections and find that they can be divided into three main types: (i) two dwarfs undergoing grazing transits, (ii) two dwarfs undergoing low-latitude transits in which one component has a substantially smaller radius than the other, and (iii) two eclipsing dwarfs blended with one or more physically unassociated foreground stars. We also predict that a significant fraction of Hot Jupiter detections are blended with the light from other stars, showing that care must be taken to identify the presence of any unresolved neighbors in order to obtain accurate estimates of planetary radii. This issue is likely to extend to terrestrial planet candidates in the CoRoT and Kepler transit surveys, for which neighbors of much fainter relative brightness will be important.Comment: 33 pages, 7 figures, 4 tables; To be published in The Astrophysical Journa
    corecore