1,459 research outputs found

    Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes

    Get PDF
    Slow earthquakes represent an important conundrum in earthquake physics. While regular earthquakes are catastrophic events with rupture velocities governed by elastic wave speed, the processes that underlie slow fault slip phenomena, including recent discoveries of tremor, slow-slip and low-frequency earthquakes, are less understood. Theoretical models and sparse laboratory observations have provided insights, but the physics of slow fault rupture remain enigmatic. Here we report on laboratory observations that illuminate the mechanics of slow-slip phenomena. We show that a spectrum of slow-slip behaviours arises near the threshold between stable and unstable failure, and is governed by frictional dynamics via the interplay of fault frictional properties, effective normal stress and the elastic stiffness of the surrounding material. This generalizable frictional mechanism may act in concert with other hypothesized processes that damp dynamic ruptures, and is consistent with the broad range of geologic environments where slow earthquakes are observed

    HD 69686: A Mysterious High Velocity B Star

    Full text link
    We report on the discovery of a high velocity B star, HD 69686. We estimate its space velocity, distance, surface temperature, gravity, and age. With these data, we are able to reconstruct the trajectory of the star and to trace it back to its birthplace. We use evolutionary tracks for single stars to estimate that HD 69686 was born 73 Myr ago in the outer part of our Galaxy (r12r \sim 12 kpc) at a position well below the Galactic plane (z1.8z \sim -1.8 kpc), a very unusual birthplace for a B star. Along the star's projected path in the sky, we also find about 12 other stars having similar proper motions, and their photometry data suggest that they are located at the same distance as HD 69686 and probably have the same age. We speculate on the origin of this group by star formation in a high velocity cloud or as a Galactic merger fragment.Comment: 28 pages, 6 figures, accepted for publication in Ap

    The Unseen Population of F to K-type Companions to Hot Subdwarf Stars

    Full text link
    We present a method to select hot subdwarf stars with A to M-type companions using photometric selection criteria. We cover a wide range in wavelength by combining GALEX ultraviolet data, optical photometry from the SDSS and the Carlsberg Meridian telescope, near-infrared data from 2MASS and UKIDSS. We construct two complimentary samples, one by matching GALEX, CMC and 2MASS, as well as a smaller, but deeper, sample using GALEX, SDSS and UKIDSS. In both cases, a large number of composite subdwarf plus main-sequence star candidates were found. We fit their spectral energy distributions with a composite model in order to estimate the subdwarf and companion star effective temperatures along with the distance to each system. The distribution of subdwarf effective temperature was found to primarily lie in the 20,000 - 30,000 K regime, but we also find cooler subdwarf candidates, making up ~5-10 per cent. The most prevalent companion spectral types were seen to be main-sequence stars between F0 and K0, while subdwarfs with M-type companions appear much rarer. This is clear observational confirmation that a very efficient first stable Roche-lobe overflow channel appears to produce a large number of subdwarfs with F to K-type companions. Our samples thus support the importance of binary evolution for subdwarf formation.Comment: 30 pages, 10 figures, 11 tables. Accepted for publication in MNRA

    First Kepler results on compact pulsators II: KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode

    Full text link
    We present the discovery of nonradial pulsations in a hot subdwarf B star based on 30.5 days of nearly continuous time-series photometry using the \emph{Kepler} spacecraft. KIC 010139564 is found to be a short-period pulsator of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes whose periods range from 130 to 190 seconds. It also shows one periodicity at a period of 3165 seconds. If this periodicity is a high order g-mode, then this star may be the hottest member of the hybrid DW Lyn stars. In addition to the resolved pulsation frequencies, additional periodic variations in the light curve suggest that a significant number of additional pulsation frequencies may be present. The long duration of the run, the extremely high duty cycle, and the well-behaved noise properties allow us to explore the stability of the periodic variations, and to place strong constraints on how many of them are independent stellar oscillation modes. We find that most of the identified periodicities are indeed stable in phase and amplitude, suggesting a rotation period of 2-3 weeks for this star, but further observations are needed to confirm this suspicion.Comment: 10 pages, accepted for publication in MNRA

    Streetlights, augmented intelligence, and information discovery

    Get PDF
    ISSN:2504 - 185

    Diverse neurological manifestations of lead encephalopathy

    Get PDF
    Three patients with lead encephalopathy due to industrial poisoning are presented. They all showed a wide spectrum of neurological manifestations, which mimic other neurological presentations. It is emphasised that lead poisoning still occurs in industry, despite efforts at prevention.S. Afr. Med. J., 48, 1721 (1974)

    EMG/ENG services rendered by clinical neurophysiology technologists in solo practice

    Get PDF
    CITATION: Bill, P. L. A., et al. 1998. EMG/ENG services rendered by clinical neurophysiology technologists in solo practice. South African Medical Journal, 88(11):1360.The original publication is available at http://www.samj.org.za[No abstract available]Publisher’s versio

    Acromegaly presenting with hemiplegia

    Get PDF
    A case of acromegaly presenting with hemiplegia is described. The radiological features, including cerebral angiography, are discussed. Acromegaly is uncommon in the Black population of South Africa. Experience at Baragwanath Hospital (2400 beds) confirms the rarity of the disease, and reference to the South African Medical Journal over the past 25 years has failed to reveal a single case. In all published series no case of 'stroke' in acromegaly is specifically described. This is unusual because of the many underlying aetiological factors of potential stroke present in acromegaly.S. Afr. Med. J., 48, 684 (1974)

    Acromegaly Presenting with Hemiplegia

    Get PDF
    A case of acromegaly presenting with hemiplegia is described. The radiological features, including cerebral angiography, are discussed. Acromegaly is uncommon in the Black population of South Africa. Experience at Baragwanath Hospital (2400 beds) confirms the rarity of the disease, and reference to the South African Medical Journal over the past 25 years has failed to reveal a single case. In all published series no case of 'stroke' in acromegaly is specifically described. This is unusual because of the many underlying aetiological factors of potential stroke present in acromegaly.S. Afr. Med. J., 48, 684 (1974)

    Modeling the System Parameters of 2M1533+3759: A New Longer-Period Low-Mass Eclipsing sdB+dM Binary

    Full text link
    We present new photometric and spectroscopic observations for 2M 1533+3759 (= NSVS 07826147). It has an orbital period of 0.16177042 day, significantly longer than the 2.3--3.0 hour periods of the other known eclipsing sdB+dM systems. Spectroscopic analysis of the hot primary yields Teff = 29230 +/- 125 K, log g = 5.58 +/- 0.03 and log N(He)/N(H) = -2.37 +/- 0.05. The sdB velocity amplitude is K1 = 71.1 +/- 1.0 km/s. The only detectable light contribution from the secondary is due to the surprisingly strong reflection effect. Light curve modeling produced several solutions corresponding to different values of the system mass ratio, q(M2/M1), but only one is consistent with a core helium burning star, q=0.301. The orbital inclination is 86.6 degree. The sdB primary mass is M1 = 0.376 +/- 0.055 Msun and its radius is R1 = 0.166 +/- 0.007 Rsun. 2M1533+3759 joins PG0911+456 (and possibly also HS2333+3927) in having an unusually low mass for an sdB star. SdB stars with masses significantly lower than the canonical value of 0.48 Msun, down to as low as 0.30 Msun, were theoretically predicted by Han et al. (2002, 2003), but observational evidence has only recently begun to confirm the existence of such stars. The existence of core helium burning stars with masses lower than 0.40--0.43 Msun implies that at least some sdB progenitors have initial main sequence masses of 1.8--2.0 Msun or more, i.e. they are at least main sequence A stars. The secondary is a main sequence M5 star.Comment: 47 pages, 7 figure
    corecore