1,459 research outputs found
Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes
Slow earthquakes represent an important conundrum in earthquake physics. While regular
earthquakes are catastrophic events with rupture velocities governed by elastic wave speed,
the processes that underlie slow fault slip phenomena, including recent discoveries of tremor,
slow-slip and low-frequency earthquakes, are less understood. Theoretical models and sparse
laboratory observations have provided insights, but the physics of slow fault rupture remain
enigmatic. Here we report on laboratory observations that illuminate the mechanics of
slow-slip phenomena. We show that a spectrum of slow-slip behaviours arises near the
threshold between stable and unstable failure, and is governed by frictional dynamics via the
interplay of fault frictional properties, effective normal stress and the elastic stiffness of the
surrounding material. This generalizable frictional mechanism may act in concert with other
hypothesized processes that damp dynamic ruptures, and is consistent with the broad range
of geologic environments where slow earthquakes are observed
HD 69686: A Mysterious High Velocity B Star
We report on the discovery of a high velocity B star, HD 69686. We estimate
its space velocity, distance, surface temperature, gravity, and age. With these
data, we are able to reconstruct the trajectory of the star and to trace it
back to its birthplace. We use evolutionary tracks for single stars to estimate
that HD 69686 was born 73 Myr ago in the outer part of our Galaxy (
kpc) at a position well below the Galactic plane ( kpc), a very
unusual birthplace for a B star. Along the star's projected path in the sky, we
also find about 12 other stars having similar proper motions, and their
photometry data suggest that they are located at the same distance as HD 69686
and probably have the same age. We speculate on the origin of this group by
star formation in a high velocity cloud or as a Galactic merger fragment.Comment: 28 pages, 6 figures, accepted for publication in Ap
The Unseen Population of F to K-type Companions to Hot Subdwarf Stars
We present a method to select hot subdwarf stars with A to M-type companions
using photometric selection criteria. We cover a wide range in wavelength by
combining GALEX ultraviolet data, optical photometry from the SDSS and the
Carlsberg Meridian telescope, near-infrared data from 2MASS and UKIDSS. We
construct two complimentary samples, one by matching GALEX, CMC and 2MASS, as
well as a smaller, but deeper, sample using GALEX, SDSS and UKIDSS. In both
cases, a large number of composite subdwarf plus main-sequence star candidates
were found. We fit their spectral energy distributions with a composite model
in order to estimate the subdwarf and companion star effective temperatures
along with the distance to each system. The distribution of subdwarf effective
temperature was found to primarily lie in the 20,000 - 30,000 K regime, but we
also find cooler subdwarf candidates, making up ~5-10 per cent. The most
prevalent companion spectral types were seen to be main-sequence stars between
F0 and K0, while subdwarfs with M-type companions appear much rarer. This is
clear observational confirmation that a very efficient first stable Roche-lobe
overflow channel appears to produce a large number of subdwarfs with F to
K-type companions. Our samples thus support the importance of binary evolution
for subdwarf formation.Comment: 30 pages, 10 figures, 11 tables. Accepted for publication in MNRA
First Kepler results on compact pulsators II: KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode
We present the discovery of nonradial pulsations in a hot subdwarf B star
based on 30.5 days of nearly continuous time-series photometry using the
\emph{Kepler} spacecraft. KIC 010139564 is found to be a short-period pulsator
of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes
whose periods range from 130 to 190 seconds. It also shows one periodicity at a
period of 3165 seconds. If this periodicity is a high order g-mode, then this
star may be the hottest member of the hybrid DW Lyn stars. In addition to the
resolved pulsation frequencies, additional periodic variations in the light
curve suggest that a significant number of additional pulsation frequencies may
be present. The long duration of the run, the extremely high duty cycle, and
the well-behaved noise properties allow us to explore the stability of the
periodic variations, and to place strong constraints on how many of them are
independent stellar oscillation modes. We find that most of the identified
periodicities are indeed stable in phase and amplitude, suggesting a rotation
period of 2-3 weeks for this star, but further observations are needed to
confirm this suspicion.Comment: 10 pages, accepted for publication in MNRA
Diverse neurological manifestations of lead encephalopathy
Three patients with lead encephalopathy due to industrial poisoning are presented. They all showed a wide spectrum of neurological manifestations, which mimic other neurological presentations. It is emphasised that lead poisoning still occurs in industry, despite efforts at prevention.S. Afr. Med. J., 48, 1721 (1974)
EMG/ENG services rendered by clinical neurophysiology technologists in solo practice
CITATION: Bill, P. L. A., et al. 1998. EMG/ENG services rendered by clinical neurophysiology technologists in solo practice. South African Medical Journal, 88(11):1360.The original publication is available at http://www.samj.org.za[No abstract available]Publisher’s versio
Acromegaly presenting with hemiplegia
A case of acromegaly presenting with hemiplegia is described. The radiological features, including cerebral angiography, are discussed. Acromegaly is uncommon in the Black population of South Africa. Experience at Baragwanath Hospital (2400 beds) confirms the rarity of the disease, and reference to the South African Medical Journal over the past 25 years has failed to reveal a single case. In all published series no case of 'stroke' in acromegaly is specifically described. This is unusual because of the many underlying aetiological factors of potential stroke present in acromegaly.S. Afr. Med. J., 48, 684 (1974)
Acromegaly Presenting with Hemiplegia
A case of acromegaly presenting with hemiplegia is described. The radiological features, including cerebral angiography, are discussed. Acromegaly is uncommon in the Black population of South Africa. Experience at Baragwanath Hospital (2400 beds) confirms the rarity of the disease, and reference to the South African Medical Journal over the past 25 years has failed to reveal a single case. In all published series no case of 'stroke' in acromegaly is specifically described. This is unusual because of the many underlying aetiological factors of potential stroke present in acromegaly.S. Afr. Med. J., 48, 684 (1974)
Modeling the System Parameters of 2M1533+3759: A New Longer-Period Low-Mass Eclipsing sdB+dM Binary
We present new photometric and spectroscopic observations for 2M 1533+3759 (=
NSVS 07826147). It has an orbital period of 0.16177042 day, significantly
longer than the 2.3--3.0 hour periods of the other known eclipsing sdB+dM
systems. Spectroscopic analysis of the hot primary yields Teff = 29230 +/- 125
K, log g = 5.58 +/- 0.03 and log N(He)/N(H) = -2.37 +/- 0.05. The sdB velocity
amplitude is K1 = 71.1 +/- 1.0 km/s. The only detectable light contribution
from the secondary is due to the surprisingly strong reflection effect. Light
curve modeling produced several solutions corresponding to different values of
the system mass ratio, q(M2/M1), but only one is consistent with a core helium
burning star, q=0.301. The orbital inclination is 86.6 degree. The sdB primary
mass is M1 = 0.376 +/- 0.055 Msun and its radius is R1 = 0.166 +/- 0.007 Rsun.
2M1533+3759 joins PG0911+456 (and possibly also HS2333+3927) in having an
unusually low mass for an sdB star. SdB stars with masses significantly lower
than the canonical value of 0.48 Msun, down to as low as 0.30 Msun, were
theoretically predicted by Han et al. (2002, 2003), but observational evidence
has only recently begun to confirm the existence of such stars. The existence
of core helium burning stars with masses lower than 0.40--0.43 Msun implies
that at least some sdB progenitors have initial main sequence masses of
1.8--2.0 Msun or more, i.e. they are at least main sequence A stars. The
secondary is a main sequence M5 star.Comment: 47 pages, 7 figure
- …
