5,426 research outputs found
Atomistic subsemirings of the lattice of subspaces of an algebra
Let A be an associative algebra with identity over a field k. An atomistic
subsemiring R of the lattice of subspaces of A, endowed with the natural
product, is a subsemiring which is a closed atomistic sublattice. When R has no
zero divisors, the set of atoms of R is endowed with a multivalued product. We
introduce an equivalence relation on the set of atoms such that the quotient
set with the induced product is a monoid, called the condensation monoid. Under
suitable hypotheses on R, we show that this monoid is a group and the class of
k1_A is the set of atoms of a subalgebra of A called the focal subalgebra. This
construction can be iterated to obtain higher condensation groups and focal
subalgebras. We apply these results to G-algebras for G a group; in particular,
we use them to define new invariants for finite-dimensional irreducible
projective representations.Comment: 14 page
Trapped-Ion Quantum Computing: Progress and Challenges
Trapped ions are among the most promising systems for practical quantum
computing (QC). The basic requirements for universal QC have all been
demonstrated with ions and quantum algorithms using few-ion-qubit systems have
been implemented. We review the state of the field, covering the basics of how
trapped ions are used for QC and their strengths and limitations as qubits. In
addition, we discuss what is being done, and what may be required, to increase
the scale of trapped ion quantum computers while mitigating decoherence and
control errors. Finally, we explore the outlook for trapped-ion QC. In
particular, we discuss near-term applications, considerations impacting the
design of future systems of trapped ions, and experiments and demonstrations
that may further inform these considerations.Comment: The following article has been submitted to Applied Physics Review
The Nature of Nearby Counterparts to Intermediate Redshift Luminous Compact Blue Galaxies II. CO Observations
We present the results of a single-dish beam-matched survey of the three
lowest rotational transitions of CO in a sample of 20 local (D < 70 Mpc)
Luminous Compact Blue Galaxies (LCBGs). These ~L*, blue, high surface
brightness, starbursting galaxies were selected with the same criteria used to
define LCBGs at higher redshifts. Our detection rate was 70%, with those
galaxies having Lblue<7e9 Lsun no detected. We find the H2 masses of local
LCBGs range from 6.6e6 to 2.7e9 Msun, assuming a Galactic CO-to-H2 conversion
factor. Combining these results with our earlier HI survey of the same sample,
we find that the ratio of molecular to atomic gas mass is low, typically 5-10%.
Using a Large Velocity Gradient model, we find that the average gas conditions
of the entire ISM in local LCBGs are similar to those found in the centers of
star forming regions in our Galaxy, and nuclear regions of other galaxies. Star
formation rates, determined from IRAS fluxes, are a few solar masses per year,
much higher per unit dynamical mass than normal spirals. If this rate remains
constant, the molecular hydrogen depletion time scales are short, 10-200 Myr.Comment: accepted for publication in the ApJ (vol 625
Inelastic collisions of ultra-cold heteronuclear molecules in an optical trap
Ultra-cold RbCs molecules in high-lying vibrational levels of the
a ground electronic state are confined in an optical trap.
Inelastic collision rates of these molecules with both Rb and Cs atoms are
determined for individual vibrational levels, across an order of magnitude of
binding energies. A simple model for the collision process is shown to
accurately reproduce the observed scattering rates
Ion traps fabricated in a CMOS foundry
We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm
CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the
top metal layer of the process for the trap electrodes. The process includes
doped active regions and metal interconnect layers, allowing for co-fabrication
of standard CMOS circuitry as well as devices for optical control and
measurement. With one of the interconnect layers defining a ground plane
between the trap electrode layer and the p-type doped silicon substrate, ion
loading is robust and trapping is stable. We measure a motional heating rate
comparable to those seen in surface-electrode traps of similar size. This is
the first demonstration of scalable quantum computing hardware, in any
modality, utilizing a commercial CMOS process, and it opens the door to
integration and co-fabrication of electronics and photonics for large-scale
quantum processing in trapped-ion arrays.Comment: 4 pages, 3 figure
- …
