2,393 research outputs found

    Learning cover context-free grammars from structural data

    Get PDF
    We consider the problem of learning an unknown context-free grammar when the only knowledge available and of interest to the learner is about its structural descriptions with depth at most .\ell. The goal is to learn a cover context-free grammar (CCFG) with respect to \ell, that is, a CFG whose structural descriptions with depth at most \ell agree with those of the unknown CFG. We propose an algorithm, called LALA^\ell, that efficiently learns a CCFG using two types of queries: structural equivalence and structural membership. We show that LALA^\ell runs in time polynomial in the number of states of a minimal deterministic finite cover tree automaton (DCTA) with respect to \ell. This number is often much smaller than the number of states of a minimum deterministic finite tree automaton for the structural descriptions of the unknown grammar

    A Study of Cooling Time Reduction of Interferometric Cryogenic Gravitational Wave Detectors Using a High-Emissivity Coating

    Full text link
    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.Comment: 8 pages, 9 figures, Proceedings of CEC/ICMC 201

    Thermal conductivity of quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7

    Get PDF
    We report low-temperature thermal conductivity κ\kappa of pyrochlore Yb2_2Ti2_2O7_7, which contains frustrated spin-ice correlations with significant quantum fluctuations. In the disordered spin-liquid regime, κ(H)\kappa(H) exhibits a nonmonotonic magnetic field dependence, which is well explained by the strong spin-phonon scattering and quantum monopole excitations. We show that the excitation energy of quantum monopoles is strongly suppressed from that of dispersionless classical monopoles. Moreover, in stark contrast to the diffusive classical monopoles, the quantum monopoles have a very long mean free path. We infer that the quantum monopole is a novel heavy particle, presumably boson, which is highly mobile in a three-dimensional spin liquid.Comment: 8 pages, 9 figure

    Chiroptical properties of an alternatingly functionalized cellotriose bearing two porphyrin groups.

    Get PDF
    Right-handedness derived from bisporphyrins attached to a cellotriose backbone at O-6 and O''-6 positions is revealed for the first time. This cellotriose is proposed as a model of alternatingly functionalized cellulosics, which have promising properties for applications in optoelectronics and molecular receptors owing to the chirality and rigid backbone effects

    Multiorbital analysis of the effects of uniaxial and hydrostatic pressure on TcT_c in the single-layered cuprate superconductors

    Get PDF
    The origin of uniaxial and hydrostatic pressure effects on TcT_c in the single-layered cuprate superconductors is theoretically explored. A two-orbital model, derived from first principles and analyzed with the fluctuation exchange approximation gives axial-dependent pressure coefficients, Tc/Pa>0\partial T_c/\partial P_a>0, Tc/Pc<0\partial T_c/\partial P_c<0, with a hydrostatic response Tc/P>0\partial T_c/\partial P>0 for both La214 and Hg1201 cuprates, in qualitative agreement with experiments. Physically, this is shown to come from a unified picture in which higher TcT_c is achieved with an "orbital distillation", namely, the less the dx2y2d_{x^2-y^2} main band is hybridized with the dz2d_{z^2} and 4s4s orbitals higher the TcT_c. Some implications for obtaining higher TcT_c materials are discussed.Comment: 6pages, 4 figure

    Self-Reduction Rate of a Microtubule

    Full text link
    We formulate and study a quantum field theory of a microtubule, a basic element of living cells. Following the quantum theory of consciousness by Hameroff and Penrose, we let the system to reduce to one of the classical states without measurement if certain conditions are satisfied(self-reductions), and calculate the self-reduction time τN\tau_N (the mean interval between two successive self-reductions) of a cluster consisting of more than NN neighboring tubulins (basic units composing a microtubule). τN\tau_N is interpreted there as an instance of the stream of consciousness. We analyze the dependence of τN\tau_N upon NN and the initial conditions, etc. For relatively large electron hopping amplitude, τN\tau_N obeys a power law τNNb\tau_N \sim N^b, which can be explained by the percolation theory. For sufficiently small values of the electron hopping amplitude, τN\tau_N obeys an exponential law, τNexp(cN)\tau_N \sim \exp(c' N). By using this law, we estimate the condition for τN\tau_N to take realistic values τN\tau_N \raisebox{-0.5ex}{>\stackrel{>}{\sim}} 10110^{-1} sec as NN \raisebox{-0.5ex} {>\stackrel{>}{\sim}} 1000.Comment: 7 pages, 9 figures, Extended versio

    Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors

    Get PDF
    In high Tc superconductors the magnetic and electronic properties are determined by the probability that valence electrons virtually jump from site to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion and favored by hopping integrals. The spatial extent of the latter is related to transport properties, including superconductivity, and to the dispersion relation of spin excitations (magnons). Here, for three antiferromagnetic parent compounds (single-layer Bi2Sr0.99La1.1CuO6+delta, double-layer Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical atoms, we compare the magnetic spectra measured by resonant inelastic x-ray scattering over a significant portion of the reciprocal space and with unprecedented accuracy. We observe that the absence of apical oxygens increases the in-plane hopping range and, in CaCuO2, it leads to a genuine 3D exchange-bond network. These results establish a corresponding relation between the exchange interactions and the crystal structure, and provide fresh insight into the materials dependence of the superconducting transition temperature.Comment: 9 pages, 4 figures, 1 Table, 42 reference

    Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin.

    Get PDF
    Cytokinins are phytohormones that induce cytokinesis and are essential for diverse developmental and physiological processes in plants. Cytokinins of the trans-zeatin type are mainly synthesized in root vasculature and transported to the shoot, where they regulate shoot growth. However, the mechanism of long-distance transport of cytokinin was hitherto unknown. Here, we report that the Arabidopsis ATP-binding cassette (ABC) transporter subfamily G14 (AtABCG14) is mainly expressed in roots and plays a major role in delivering cytokinins to the shoot. Loss of AtABCG14 expression resulted in severe shoot growth retardation, which was rescued by exogenous trans-zeatin application. Cytokinin content was decreased in the shoots of atabcg14 plants and increased in the roots, with consistent changes in the expression of cytokinin-responsive genes. Grafting of atabcg14 scions onto wild-type rootstocks restored shoot growth, whereas wild-type scions grafted onto atabcg14 rootstocks exhibited shoot growth retardation similar to that of atabcg14. Cytokinin concentrations in the xylem are reduced by similar to 90% in the atabcg14 mutant. These results indicate that AtABCG14 is crucial for the translocation of cytokinin to the shoot. Our results provide molecular evidence for the long-distance transport of cytokinin and show that this transport is necessary for normal shoot development.open118380Ysciescopu

    An algebraic Birkhoff decomposition for the continuous renormalization group

    Full text link
    This paper aims at presenting the first steps towards a formulation of the Exact Renormalization Group Equation in the Hopf algebra setting of Connes and Kreimer. It mostly deals with some algebraic preliminaries allowing to formulate perturbative renormalization within the theory of differential equations. The relation between renormalization, formulated as a change of boundary condition for a differential equation, and an algebraic Birkhoff decomposition for rooted trees is explicited

    Re-entrant hidden order at a metamagnetic quantum critical end point

    Get PDF
    Magnetization measurements of URu2Si2 in pulsed magnetic fields of 44 T reveal that the hidden order phase is destroyed before appearing in the form of a re-entrant phase between ~ 36 and 39 T. Evidence for conventional itinerant electron metamagnetism at higher temperatures suggests that the re-entrant phase is created in the vicinity of a quantum critical end point.Comment: 8 pages, including 3 figures (Physical Review Letters, in press) a systematic error in the field calibration has been fixed since the original submission of this manuscrip
    corecore