3,239 research outputs found
The Sensitivity of First Generation Epoch of Reionization Observatories and Their Potential for Differentiating Theoretical Power Spectra
Statistical observations of the epoch of reionization (EOR) power spectrum
provide a rich data set for understanding the transition from the cosmic "dark
ages" to the ionized universe we see today. EOR observations have become an
active area of experimental cosmology, and three first generation
observatories--MWA, PAST, and LOFAR--are currently under development. In this
paper we provide the first quantitative calculation of the three dimensional
power spectrum sensitivity, incorporating the design parameters of a planned
array. This calculation is then used to explore the constraints these first
generation observations can place on the EOR power spectrum. The results
demonstrate the potential of upcoming power spectrum observations to constrain
theories of structure formation and reionization.Comment: 7 pages with 5 figures. Submitted to Ap
S-PRAC: Fast Partial Packet Recovery with Network Coding in Very Noisy Wireless Channels
Well-known error detection and correction solutions in wireless
communications are slow or incur high transmission overhead. Recently, notable
solutions like PRAC and DAPRAC, implementing partial packet recovery with
network coding, could address these problems. However, they perform slowly when
there are many errors. We propose S-PRAC, a fast scheme for partial packet
recovery, particularly designed for very noisy wireless channels. S-PRAC
improves on DAPRAC. It divides each packet into segments consisting of a fixed
number of small RLNC encoded symbols and then attaches a CRC code to each
segment and one to each coded packet. Extensive simulations show that S-PRAC
can detect and correct errors quickly. It also outperforms DAPRAC significantly
when the number of errors is high
Electroweak Phase Transition in the U(1)' MSSM
In this work, we have investigated the nature of the electroweak phase
transition in the U(1) extended minimal supersymmetric standard model without
introducing any exotic fields. The effective potential has been estimated
exactly at finite temperature taking into account the whole particle spectrum.
For reasonable values of the lightest Higgs and neutralino, we found that the
electroweak phase transition could be strongly first order due to: (1) the
interactions of the singlet with the doublets in the effective potential, and
(2) the evolution of the wrong vacuum that delays the transition.Comment: substantial changes, references added, 18 pages, 4 figure
Intimal sarcoma of pulmonary artery: multi-slice ECG-gated computed tomography findings with 3D reconstruction
Lessons from LIMK1 enzymology and their impact on inhibitor design
LIM domain kinase 1 (LIMK1) is a key regulator of actin dynamics. It is thereby a potential therapeutic target for the prevention of fragile X syndrome and amyotrophic lateral sclerosis. Herein, we use X-ray crystallography and activity assays to describe how LIMK1 accomplishes substrate specificity, to suggest a unique ‘rock-and-poke’ mechanism of catalysis and to explore the regulation of the kinase by activation loop phosphorylation. Based on these findings, a differential scanning fluorimetry assay and a RapidFire mass spectrometry activity assay were established, leading to the discovery and confirmation of a set of small-molecule LIMK1 inhibitors. Interestingly, several of the inhibitors were inactive towards the closely related isoform LIMK2. Finally, crystal structures of the LIMK1 kinase domain in complex with inhibitors (PF-477736 and staurosporine, respectively) are presented, providing insights into LIMK1 plasticity upon inhibitor binding
Rapid generation of angular momentum in bounded magnetized plasma
Direct numerical simulations of two-dimensional decaying MHD turbulence in
bounded domains show the rapid generation of angular momentum in
nonaxisymmetric geometries. It is found that magnetic fluctuations enhance this
mechanism. On a larger time scale, the generation of a magnetic angular
momentum, or angular field, is observed. For axisymmetric geometries, the
generation of angular momentum is absent; nevertheless, a weak magnetic field
can be observed. The derived evolution equations for both the angular momentum
and angular field yield possible explanations for the observed behavior
A deep level set method for image segmentation
This paper proposes a novel image segmentation approachthat integrates fully
convolutional networks (FCNs) with a level setmodel. Compared with a FCN, the
integrated method can incorporatesmoothing and prior information to achieve an
accurate segmentation.Furthermore, different than using the level set model as
a post-processingtool, we integrate it into the training phase to fine-tune the
FCN. Thisallows the use of unlabeled data during training in a
semi-supervisedsetting. Using two types of medical imaging data (liver CT and
left ven-tricle MRI data), we show that the integrated method achieves
goodperformance even when little training data is available, outperformingthe
FCN or the level set model alone
Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs
Bound states of the Hamiltonian describing a quantum particle living on three
dimensional straight strip of width are investigated. We impose the Neumann
boundary condition on the two concentric windows of the radii and
located on the opposite walls and the Dirichlet boundary condition on the
remaining part of the boundary of the strip. We prove that such a system
exhibits discrete eigenvalues below the essential spectrum for any .
When and tend to the infinity, the asymptotic of the eigenvalue is
derived. A comparative analysis with the one-window case reveals that due to
the additional possibility of the regulating energy spectrum the anticrossing
structure builds up as a function of the inner radius with its sharpness
increasing for the larger outer radius. Mathematical and physical
interpretation of the obtained results is presented; namely, it is derived that
the anticrossings are accompanied by the drastic changes of the wave function
localization. Parallels are drawn to the other structures exhibiting similar
phenomena; in particular, it is proved that, contrary to the two-dimensional
geometry, at the critical Neumann radii true bound states exist.Comment: 25 pages, 7 figure
Pulsatile blood flow through a constricted porous artery
In this paper a speculative study of an incompressible Newtonian blood flow through a constricted porous channel and pulsatile nature is inspected. Porosity parameter λ is incorporated in the momentum equation. Governing nonlinear differential equations are numerically evaluated by employing the perturbation method technique for a very small perturbation parameter ε 1 such that ε ≠ 0 and with conformable boundary conditions. Numerical results of the flow velocity profile and volumetric flow rate have been derived numerically and detailed graphical analysis for different physical parameters porosity, Reynolds number and stenosis has been presented. It is found that arterial blood velocity is dependent upon all of these factors and that the relationship of fluid velocity and flow is more complex and nonlinear than heretofore generally believe. Furthermore the flow velocity enhanced with Reynolds number, porosity parameter and at maximum position of the stenosis/constriction
- …
