1,505 research outputs found
Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples
In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ_(Δz/(1+z(spec))~0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg^2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H_(AB) = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band
A Far-infrared Characterization of 24 μm Selected Galaxies at 0 < z < 2.5 using Stacking at 70 μm and 160 μm in the COSMOS Field
We present a study of the average properties of luminous infrared galaxies detected directly at 24 μm in the COSMOS field using a median stacking analysis at 70 μm and 160 μm. Over 35,000 sources spanning 0 ≤ z ≤ 3 and 0.06 mJy ≤ S_(24) ≤ 3.0 mJy are stacked, divided into bins of both photometric redshift and 24 μm flux. We find no correlation of S_(70)/S_(24) flux density ratio with S_(24), but find that galaxies with higher S_(24) have a lower S_(160)/S_(24) flux density ratio. These observed ratios suggest that 24 μm selected galaxies have warmer spectral energy distributions (SEDs) at higher mid-IR fluxes, and therefore have a possible higher fraction of active galactic nuclei. Comparisons of the average S_(70)/S_(24) and S_(160)/S_(24) colors with various empirical templates and theoretical models show that the galaxies detected at 24 μm are consistent with "normal" star-forming galaxies and warm mid-IR galaxies such as Mrk 231, but inconsistent with heavily obscured galaxies such as Arp 220. We perform a χ^2 analysis to determine best-fit galactic model SEDs and total IR luminosities for each of our bins. We compare our results to previous methods of estimating L IR and find that previous methods show considerable agreement over the full redshift range, except for the brightest S_(24) sources, where they overpredict the bolometric IR luminosity at high redshift, most likely due to their warmer dust SED. We present a table that can be used as a more accurate and robust method for estimating bolometric infrared luminosity from 24 μm flux densities
Clustering of galaxies around GRB sight-lines
There is evidence of an overdensity of strong intervening MgII absorption
line systems distributed along the lines of sight towards GRB afterglows
relative to quasar sight-lines. If this excess is real, one should also expect
an overdensity of field galaxies around GRB sight-lines, as strong MgII tends
to trace these sources. In this work, we test this expectation by calculating
the two point angular correlation function of galaxies within
120 ( at ) of GRB afterglows. We compare the Gamma-ray burst Optical and
Near-infrared Detector (GROND) GRB afterglow sample -- one of the largest and
most homogeneous samples of GRB fields -- with galaxies and AGN found in the
COSMOS-30 photometric catalog. We find no significant signal of anomalous
clustering of galaxies at an estimated median redshift of around GRB
sight-lines, down to . This result is contrary to the
expectations from the MgII excess derived from GRB afterglow spectroscopy,
although many confirmed galaxy counterparts to MgII absorbers may be too faint
to detect in our sample -- especially those at . We note that the addition
of higher sensitivity Spitzer IRAC or HST WFC3 data for even a subset of our
sample would increase this survey's depth by several orders of magnitude,
simultaneously increasing statistics and enabling the investigation of a much
larger redshift space.}Comment: 10 pages, 6 figures. A&A accepte
A Multiwavelength Study of a Sample of 70 μm Selected Galaxies in the COSMOS Field. II. The Role of Mergers in Galaxy Evolution
We analyze the morphological properties of a large sample of 1503 70 μm selected galaxies in the COSMOS field spanning the redshift range 0.01 10^(12) L_☉) being up to ~50%. We also find that the fraction of spirals drops dramatically with L_(IR). Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (L_(IR) 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z 1, the fraction of major mergers is lower, but is at least 30%-40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U – V color of the galaxies in our sample peaks in the green valley (= 1.1) with a large spread at bluer and redder colors and with the major mergers peaking more strongly in the green valley than the rest of the morphological classes. We argue that, given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase, it is plausible for the observed red sequence of massive ellipticals (<10^(12) M_☉) to have been formed entirely by gas-rich major mergers
Radio galaxy feedback in X-ray selected groups from COSMOS: the effect on the ICM
We quantify the importance of the mechanical energy released by
radio-galaxies inside galaxy groups. We use scaling relations to estimate the
mechanical energy released by 16 radio-AGN located inside X-ray detected galaxy
groups in the COSMOS field. By comparing this energy output to the host groups'
gravitational binding energy, we find that radio galaxies produce sufficient
energy to unbind a significant fraction of the intra-group medium. This
unbinding effect is negligible in massive galaxy clusters with deeper potential
wells. Our results correctly reproduce the breaking of self-similarity observed
in the scaling relation between entropy and temperature for galaxy groups.Comment: Accepted for publication in the Astrophysical Journal. 12 Page
X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue
AGN are known to have complex X-ray spectra that depend on both the
properties of the accreting SMBH (e.g. mass, accretion rate) and the
distribution of obscuring material in its vicinity ("torus"). Often however,
simple and even unphysical models are adopted to represent the X-ray spectra of
AGN. In the case of blank field surveys in particular, this should have an
impact on e.g. the determination of the AGN luminosity function, the inferred
accretion history of the Universe and also on our understanding of the relation
between AGN and their host galaxies. We develop a Bayesian framework for model
comparison and parameter estimation of X-ray spectra. We take into account
uncertainties associated with X-ray data and photometric redshifts. We also
demonstrate how Bayesian model comparison can be used to select among ten
different physically motivated X-ray spectral models the one that provides a
better representation of the observations. Despite the use of low-count
spectra, our methodology is able to draw strong inferences on the geometry of
the torus. For a sample of 350 AGN in the 4 Ms Chandra Deep Field South field,
our analysis identifies four components needed to represent the diversity of
the observed X-ray spectra: (abridged). Simpler models are ruled out with
decisive evidence in favour of a geometrically extended structure with
significant Compton scattering. Regarding the geometry of the obscurer, there
is strong evidence against both a completely closed or entirely open toroidal
geometry, in favour of an intermediate case. The additional Compton reflection
required by data over that predicted by toroidal geometry models, may be a sign
of a density gradient in the torus or reflection off the accretion disk.
Finally, we release a catalogue with estimated parameters such as the accretion
luminosity in the 2-10 keV band and the column density, , of the
obscurer.Comment: 28 pages, 18 figures, catalogue available from
https://www.mpe.mpg.de/~jbuchner/agn_torus/analysis/cdfs4Ms_cat/, software
available from https://github.com/JohannesBuchner/BX
ANÁLISE DA QUALIDADE DO CRESCIMENTO ECONÔMICO NOS ESTADOS BRASILEIROS DE 1995 A 2008: QUÃO ELÁSTICOS SÃO OS INDICADORES DE POBREZA COM RELAÇÃO AO CRESCIMENTO?
Encoding the infrared excess (IRX) in the NUVrK color diagram for star-forming galaxies
We present an empirical method of assessing the star formation rate (SFR) of
star-forming galaxies based on their locations in the rest-frame color-color
diagram (NUV-r) vs (r-K). By using the Spitzer 24 micron sample in the COSMOS
field (~16400 galaxies with 0.2 < z < 1.3) and a local GALEX-SDSS-SWIRE sample
(~700 galaxies with z = <
L_IR / L_UV > can be described by a single vector, NRK, that combines the two
colors. The calibration between and NRK allows us to recover the IR
luminosity, L_IR, with an accuracy of ~0.21 dex for the COSMOS sample and ~0.27
dex for the local one. The SFRs derived with this method agree with the ones
based on the observed (UV+IR) luminosities and on the spectral energy
distribution fitting for the vast majority (~85 %) of the star-forming
population. Thanks to a library of model galaxy SEDs with realistic
prescriptions for the star formation history, we show that we need to include a
two-component dust model (i.e., birth clouds and diffuse ISM) and a full
distribution of galaxy inclinations in order to reproduce the behavior of the
stripes in the NUVrK diagram. In conclusion, the NRK method, based only
on rest-frame UV and optical colors available in most of the extragalactic
fields, offers a simple alternative of assessing the SFR of star-forming
galaxies in the absence of far-IR or spectral diagnostic observations.Comment: 21 pages, 22 figures, in publication in Astronomy & Astrophysic
Environment of MAMBO galaxies in the COSMOS field
Submillimeter galaxies (SMG) represent a dust-obscured high-redshift
population undergoing massive star formation activity. Their properties and
space density have suggested that they may evolve into spheroidal galaxies
residing in galaxy clusters. In this paper, we report the discovery of compact
(~10"-20") galaxy overdensities centered at the position of three SMGs detected
with the Max-Planck Millimeter Bolometer camera (MAMBO) in the COSMOS field.
These associations are statistically significant. The photometric redshifts of
galaxies in these structures are consistent with their associated SMGs; all of
them are between z=1.4-2.5, implying projected physical sizes of ~170 kpc for
the overdensities. Our results suggest that about 30% of the radio-identified
bright SMGs in that redshift range form in galaxy density peaks in the crucial
epoch when most stars formed.Comment: Accepted for publication in ApJ Letter
- …
