3,264 research outputs found
Optically-pumped dilute nitride spin-VCSEL
We report the first room temperature optical spin-injection of a dilute nitride 1300 nm vertical-cavity surface-emitting laser (VCSEL) under continuous-wave optical pumping. We also present a novel experimental protocol for the investigation of optical spin-injection with a fiber setup. The experimental results indicate that the VCSEL polarization can be controlled by the pump polarization, and the measured behavior is in excellent agreement with theoretical predictions using the spin flip model. The ability to control the polarization of a long-wavelength VCSEL at room temperature emitting at the wavelength of 1.3 μm opens up a new exciting research avenue for novel uses in disparate fields of technology ranging from spintronics to optical telecommunication networks. © 2012 Optical Society of America
Existence of global strong solutions to a beam-fluid interaction system
We study an unsteady non linear fluid-structure interaction problem which is
a simplified model to describe blood flow through viscoleastic arteries. We
consider a Newtonian incompressible two-dimensional flow described by the
Navier-Stokes equations set in an unknown domain depending on the displacement
of a structure, which itself satisfies a linear viscoelastic beam equation. The
fluid and the structure are fully coupled via interface conditions prescribing
the continuity of the velocities at the fluid-structure interface and the
action-reaction principle. We prove that strong solutions to this problem are
global-in-time. We obtain in particular that contact between the viscoleastic
wall and the bottom of the fluid cavity does not occur in finite time. To our
knowledge, this is the first occurrence of a no-contact result, but also of
existence of strong solutions globally in time, in the frame of interactions
between a viscous fluid and a deformable structure
A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body
The issue of the inviscid limit for the incompressible Navier-Stokes
equations when a no-slip condition is prescribed on the boundary is a famous
open problem. A result by Tosio Kato says that convergence to the Euler
equations holds true in the energy space if and only if the energy dissipation
rate of the viscous flow in a boundary layer of width proportional to the
viscosity vanishes. Of course, if one considers the motion of a solid body in
an incompressible fluid, with a no-slip condition at the interface, the issue
of the inviscid limit is as least as difficult. However it is not clear if the
additional difficulties linked to the body's dynamic make this issue more
difficult or not. In this paper we consider the motion of a rigid body in an
incompressible fluid occupying the complementary set in the space and we prove
that a Kato type condition implies the convergence of the fluid velocity and of
the body velocity as well, what seems to indicate that an answer in the case of
a fixed boundary could also bring an answer to the case where there is a moving
body in the fluid
Deterministic polarization chaos from a laser diode
Fifty years after the invention of the laser diode and fourty years after the
report of the butterfly effect - i.e. the unpredictability of deterministic
chaos, it is said that a laser diode behaves like a damped nonlinear
oscillator. Hence no chaos can be generated unless with additional forcing or
parameter modulation. Here we report the first counter-example of a
free-running laser diode generating chaos. The underlying physics is a
nonlinear coupling between two elliptically polarized modes in a
vertical-cavity surface-emitting laser. We identify chaos in experimental
time-series and show theoretically the bifurcations leading to single- and
double-scroll attractors with characteristics similar to Lorenz chaos. The
reported polarization chaos resembles at first sight a noise-driven mode
hopping but shows opposite statistical properties. Our findings open up new
research areas that combine the high speed performances of microcavity lasers
with controllable and integrated sources of optical chaos.Comment: 13 pages, 5 figure
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells
This is an open-access paper.Cytogenetic studies in clonal plasma cell disorders have mainly been done in whole bone marrow or CD138+ microbead-enriched plasma cells and suggest that recurrent immunoglobulin heavy chain translocations - e.g. t(4;14) - are primary oncogenetic events. The aim of this study was to determine cytogenetic patterns of highly purified aberrant plasma cells (median purity ≥98%) in different clonal plasma cell disorders. We analyzed aberrant plasma cells from 208 patients with multiple myeloma (n=148) and monoclonal gammopathy of undetermined significance (n=60) for the presence of del(13q14), del(17p13) and t(14q32) using multicolor interphase fluorescence in situ hybridization. Additionally, immunoglobulin heavy chain gene arrangements were analyzed and complementarity determining region 3 was sequenced in a subset of patients and combined multicolor interphase fluorescence in situ hybridization/immunofluorescent protein staining analyses were performed in selected cases to confirm clonality and cytogenetic findings. At diagnosis, 96% of cases with multiple myeloma versus 77% of monoclonal gammopathy of undetermined significance cases showed at least one cytogenetic alteration and/or hyperdiploidy. The cytogenetic heterogeneity of individual cases reflected coexistence of cytogenetically-defined aberrant plasma cell clones, and led to the assumption that karyotypic alterations were acquired stepwise. Cases of multiple myeloma and monoclonal gammopathy of undetermined significance frequently showed different but related cytogenetic profiles when other cytogenetic alterations such as deletions/gains of the immunoglobulin heavy chain or the fibroblast growth factor receptor 3 were additionally considered. Interestingly, in 24% of multiple myeloma versus 62% of monoclonal gammopathy of undetermined significance patients with an immunoglobulin heavy chain translocation, aberrant plasma cells with and without t(14q32) coexisted in the same patient. Our data suggest that recurrent immunoglobulin heavy chain translocations might be absent in the primordial plasma cell clone in a significant proportion of patients with clonal plasma cell disorders carrying these cytogenetic alterations.This work was partially supported by grants from the Fundacion Memoria de Don Samuel Solorzano Barruso, Salamanca, Spain (FS/4-2010). The authors would also like to thank the Dr. Werner Jackstädt Foundation (Wuppertal, Germany) for grant supporting the work of Martin Schmidt-Hieber. The authors would like to thank the Cooperative Research Thematic Network (RTICs; RTICC RD06/0020/0035, RD06/0020/0006 and G03/136), MM Jevitt, SL firm, Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria (FIS: PI060339; 02/0905; 01/0089/01-02; PS09/01897) and Gerencia Regional de Salud de Castilla y León; Ayuda de Excelencia de Castilla y León, Consejeria de Educación (EDU/894/2009, GR37), and Consejería de Sanidad (557/A/10), Junta de Castilla y León, Valladolid, Spain for supporting this study. JMS is supported by a grant (CP05/00321) from the ISCIII, Ministerio de Ciencia e Innovacion, Madrid, Spain.Peer Reviewe
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
- …
