131 research outputs found

    Magnetic and electronic phase transitions probed by nanomechanical resonators

    Get PDF
    The reduced dimensionality of two-dimensional (2D) materials results in characteristic types of magnetically and electronically ordered phases. However, only few methods are available to study this order, in particular in ultrathin insulating antiferromagnets that couple weakly to magnetic and electronic probes. Here, we demonstrate that phase transitions in thin membranes of 2D antiferromagnetic FePS3, MnPS3 and NiPS3 can be probed mechanically via the temperature-dependent resonance frequency and quality factor. The observed relation between mechanical motion and antiferromagnetic order is shown to be mediated by the specific heat and reveals a strong dependence of the Néel temperature of FePS3 on electrostatically induced strain. The methodology is not restricted to magnetic order, as we demonstrate by probing an electronic charge-density-wave phase in 2H-TaS2. It thus offers the potential to characterize phase transitions in a wide variety of materials, including those that are antiferromagnetic, insulating or so thin that conventional bulk characterization methods become unsuitable

    Poisson ratio and plasticity of glasses

    Full text link

    Erratum to: “The excited state model and elementary act of softening of glassy solids”

    Full text link

    Model of viscous flow of glass-forming liquids and glasses

    Full text link

    On the nature of the liquid-to-glass transition equation

    Full text link

    Fluctuation free volume of metallic glasses

    Full text link

    Application of the model of delocalized atoms to metallic glasses

    Full text link
    corecore