2,526 research outputs found
Mott Insulator to Superfluid transition in Bose-Bose mixtures in a two-dimensional lattice
We perform a numeric study (Worm algorithm Monte Carlo simulations) of
ultracold two-component bosons in two-dimensional optical lattices. We study
how the Mott insulator to superfluid transition is affected by the presence of
a second superfluid bosonic species. We find that, at fixed interspecies
interaction, the upper and lower boundaries of the Mott lobe are differently
modified. The lower boundary is strongly renormalized even for relatively low
filling factor of the second component and moderate (interspecies) interaction.
The upper boundary, instead, is affected only for large enough filling of the
second component. Whereas boundaries are renormalized we find evidence of
polaron-like excitations. Our results are of interest for current experimental
setups.Comment: 4 pages, 3 figures, accepted as PRA Rapid Communicatio
Big rip avoidance via black holes production
We consider a cosmological scenario in which the expansion of the Universe is
dominated by phantom dark energy and black holes which condense out of the
latter component. The mass of black holes decreases via Hawking evaporation and
by accretion of phantom fluid but new black holes arise continuously whence the
overall evolution can be rather complex. We study the corresponding dynamical
system to unravel this evolution and single out scenarios where the big rip
singularity does not occur.Comment: 16 pages, two figures. Key words. Cosmology, phantom energy, black
holes. Sligthly extended version to be published in Gravitation and Cosmolog
Supersolid phase with cold polar molecules on a triangular lattice
We study a system of heteronuclear molecules on a triangular lattice and
analyze the potential of this system for the experimental realization of a
supersolid phase. The ground state phase diagram contains superfluid, solid and
supersolid phases. At finite temperatures and strong interactions there is an
additional emulsion region, in contrast to similar models with short-range
interactions. We derive the maximal critical temperature and the
corresponding entropy for supersolidity and find feasible
experimental conditions for its realization.Comment: 4 pages, 4 figure
Superfluid-Insulator and Roughening Transitions in Domain Walls
We have performed quantum Monte Carlo simulations to investigate the
superfluid behavior of one- and two-dimensional interfaces separating
checkerboard solid domains. The system is described by the hard-core
Bose-Hubbard Hamiltonian with nearest-neighbor interaction. In accordance with
Ref.1, we find that (i) the interface remains superfluid in a wide range of
interaction strength before it undergoes a superfluid-insulator transition;
(ii) in one dimension, the transition is of the Kosterlitz-Thouless type and is
accompanied by the roughening transition, driven by proliferation of charge 1/2
quasiparticles; (iii) in two dimensions, the transition belongs to the 3D U(1)
universality class and the interface remains smooth. Similar phenomena are
expected for domain walls in quantum antiferromagnets.Comment: 6 pages, 7 figures; references added, typo corrected in fig
Sufficient Conditions for Fast Switching Synchronization in Time Varying Network Topologies
In previous work, empirical evidence indicated that a time-varying network
could propagate sufficient information to allow synchronization of the
sometimes coupled oscillators, despite an instantaneously disconnected
topology. We prove here that if the network of oscillators synchronizes for the
static time-average of the topology, then the network will synchronize with the
time-varying topology if the time-average is achieved sufficiently fast. Fast
switching, fast on the time-scale of the coupled oscillators, overcomes the
descychnronizing decoherence suggested by disconnected instantaneous networks.
This result agrees in spirit with that of where empirical evidence suggested
that a moving averaged graph Laplacian could be used in the master-stability
function analysis. A new fast switching stability criterion here-in gives
sufficiency of a fast-switching network leading to synchronization. Although
this sufficient condition appears to be very conservative, it provides new
insights about the requirements for synchronization when the network topology
is time-varying. In particular, it can be shown that networks of oscillators
can synchronize even if at every point in time the frozen-time network topology
is insufficiently connected to achieve synchronization.Comment: Submitted to SIAD
Ultracold Dipolar Gases in Optical Lattices
This tutorial is a theoretical work, in which we study the physics of
ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of
bosonic atoms or molecules that interact via dipolar forces, and that are
cooled below the quantum degeneracy temperature, typically in the nK range.
When such a degenerate quantum gas is loaded into an optical lattice produced
by standing waves of laser light, new kinds of physical phenomena occur. These
systems realize then extended Hubbard-type models, and can be brought to a
strongly correlated regime. The physical properties of such gases, dominated by
the long-range, anisotropic dipole-dipole interactions, are discussed using the
mean-field approximations, and exact Quantum Monte Carlo techniques (the Worm
algorithm).Comment: 56 pages, 26 figure
PHS46 Clinical and Economic impact of the introduction of the Vaccine against Meningococcal Meningitis C in Children Aged 0-4 years in Brazil
DesconegutPla general del monument amb l'aparença
d'una fortificació. Situada al centre hi ha
una placa commemorativa en forma
d'arc per amb un escut de la ciutat de
Barcelona, envoltat d'unes branques
d'olivera
Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources
Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs
- …
