273 research outputs found
Formation and observation of a quasi-two-dimensional electron liquid in epitaxially stabilized SrLaTiO thin films
We report the formation and observation of an electron liquid in
SrLaTiO, the quasi-two-dimensional counterpart of SrTiO,
through reactive molecular-beam epitaxy and {\it in situ} angle-resolved
photoemission spectroscopy. The lowest lying states are found to be comprised
of Ti 3 orbitals, analogous to the LaAlO/SrTiO interface and
exhibit unusually broad features characterized by quantized energy levels and a
reduced Luttinger volume. Using model calculations, we explain these
characteristics through an interplay of disorder and electron-phonon coupling
acting co-operatively at similar energy scales, which provides a possible
mechanism for explaining the low free carrier concentrations observed at
various oxide heterostructures such as the LaAlO/SrTiO interface
Nonlinear modal testing performed by pulsed-air jet excitation system
This paper presents a novel approach for testing structural component to nonlinear vibrations. Nowadays, nonlinear testing is mainly carried out by using electromagnetic shakers. These are efficient and powerful excitation systems which transmit the force by a rigid stinger and can be driven by different excitation signals. The rigid connection contributes to create mechanical impedance mismatch between the shaker and the test structure thus reducing the efficiency of the driving force. An alternative solution to shakers is represented by use of a pulsed air jet excitation method, which drives the force by a pulsed air-jets and therefore contactless. This condition eliminates the mechanical impedance mismatch with the test structure and the excitation can be more efficient than the one created by shakers. The pulsed air-jet excitation system is used to study nonlinear vibrations of composites components. These were designed to be mock-ups of fan blades the layup of which was varied for the three types of components used in this work. Tests were carried out by performing forced response and free decay measurements. The free decay type of test revealed interesting results and the novelty of using such an exciter for nonlinear testing. The major novelty consists of interrupting the air flow from a steady state condition and let happen the free decay, all these without experiencing undesired dynamics as experienced by contact excitatio
Polar distortions in hydrogen bonded organic ferroelectrics
Although ferroelectric compounds containing hydrogen bonds were among the
first to be discovered, organic ferroelectrics are relatively rare. The
discovery of high polarization at room temperature in croconic acid [Nature
\textbf{463}, 789 (2010)] has led to a renewed interest in organic
ferroelectrics. We present an ab-initio study of two ferroelectric organic
molecular crystals, 1-cyclobutene-1,2-dicarboxylic acid (CBDC) and
2-phenylmalondialdehyde (PhMDA). By using a distortion-mode analysis we shed
light on the microscopic mechanisms contributing to the polarization, which we
find to be as large as 14.3 and 7.0\,C/cm for CBDC and PhMDA
respectively. These results suggest that it may be fruitful to search among
known but poorly characterized organic compounds for organic ferroelectrics
with enhanced polar properties suitable for device applications.Comment: Submitte
Cyclin D1 integrates G9a-mediated histone methylation.
Lysine methylation of histones and non-histone substrates by the SET domain containing protein lysine methyltransferase (KMT) G9a/EHMT2 governs transcription contributing to apoptosis, aberrant cell growth, and pluripotency. The positioning of chromosomes within the nuclear three-dimensional space involves interactions between nuclear lamina (NL) and the lamina-associated domains (LAD). Contact of individual LADs with the NL are dependent upon H3K9me2 introduced by G9a. The mechanisms governing the recruitment of G9a to distinct subcellular sites, into chromatin or to LAD, is not known. The cyclin D1 gene product encodes the regulatory subunit of the holoenzyme that phosphorylates pRB and NRF1 thereby governing cell-cycle progression and mitochondrial metabolism. Herein, we show that cyclin D1 enhanced H3K9 dimethylation though direct association with G9a. Endogenous cyclin D1 was required for the recruitment of G9a to target genes in chromatin, for G9a-induced H3K9me2 of histones, and for NL-LAD interaction. The finding that cyclin D1 is required for recruitment of G9a to target genes in chromatin and for H3K9 dimethylation, identifies a novel mechanism coordinating protein methylation
Comparative mapping of the fragile histidine triad (FHIT) gene in cattle, river buffalo, sheep and goat by FISH and assignment to BTA22 by RH-mapping: a comparison with HSA3
Common fragile sites can be damaged by exposure to a variety of carcinogens. The fragile histidine triad (FHIT) gene, including the most active human chromosomal fragile site (FRA3B) at chromosome band HSA3p14.2,1 has been proposed as a tumour suppressor gene for a variety of tumours.2 The most common response to carcinogen exposure is deletions at the FHIT locus that alter the gene structure and function. In this study we assign the FHIT gene in cattle, river buffalo, sheep and goat chromosomes by comparative fluorescence in situ hybridization (FISH)-mapping. In addition, the assignment to BTA22 was confirmed by typing the marker across a bovine radiation hybrid (RH) panel
Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis
Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer. Herein, transduction of cyclin D1(-/-) mouse embryonic fibroblasts (MEFs) with the kinase dead KE mutant of cyclin D1 led to aneuploidy, abnormalities in mitotic spindle formation, autosome amplification, and chromosomal instability (CIN) by gene expression profiling. Acute transgenic expression of either cyclin D1(WT) or cyclin D1(KE) in the mammary gland was sufficient to induce a high CIN score within 7 days. Sustained expression of cyclin D1(KE) induced mammary adenocarcinoma with similar kinetics to that of the wild-type cyclin D1. ChIP-Seq studies demonstrated recruitment of cyclin D1(WT) and cyclin D1(KE) to the genes governing CIN. We conclude that the CDK-activating function of cyclin D1 is not necessary to induce either chromosomal instability or mammary tumorigenesis
Optical fiber sensing cables for brillouin-based distributed measurements
Brillouin distributed optical fiber sensing (Brillouin D-FOS) is a powerful technology for real-time in situ monitoring of various physical quantities, such as strain, temperature, and pressure. Compared to local or multi-point fiber optic sensing techniques, in Brillouin-based sensing, the optical fiber is interrogated along its complete length with a resolution down to decimeters and with a frequency encoding of the measure information that is not affected by changes in the optical attenuation. The fiber sensing cable plays a significant role since it must ensure a low optical loss and optimal transfer of the measured parameters for a long time and in harsh conditions, e.g., the presence of moisture, corrosion, and relevant mechanical or thermal stresses. In this paper, research and application regarding optical fiber cables for Brillouin distributed sensing are reviewed, connected, and extended. It is shown how appropriate cable design can give a significant contribution toward the successful exploitation of the Brillouin D-FOS technique
Machine learning-based compression of quantum many body physics: PCA and autoencoder representation of the vertex function
Theoretical approaches to quantum many-body physics require developing compact representations of the complexity of generic quantum states. This paper explores an interpretable data-driven approach utilizing principal component analysis (PCA) and autoencoder neural networks to compress the two-particle vertex, a key element in Feynman diagram approaches. We show that the linear PCA offers more physical insight and better out-of-distribution generalization than the nominally more expressive autoencoders. Even with ∼10-20 principal components, we find excellent reconstruction across the phase diagram suggesting the existence of heretofore unrealized structures in the diagrammatic theory. We show that the principal components needed to describe the ferromagnetic state are not contained in the low rank description of the Fermi liquid (FL) state, unlike those for antiferromagnetic and superconducting states, suggesting that the latter two states emerge from pre-existing fluctuations in the FL while ferromagnetism is driven by a different process
Pressure-induced Topological Phase Transitions in Rock-salt Chalcogenides
By means of a comprehensive theoretical investigation, we show that external
pressure can induce topological phase transitions in IV-VI semiconducting
chalcogenides with rock-salt structure. These materials satisfy mirror
symmetries that are needed to sustain topologically protected surface states,
at variance with time-reversal symmetry responsible for gapless edge states in
topological insulators. The band inversions at high-symmetry
points in the Brillouin zone that are related by mirror symmetry, are brought
about by an "asymmetric" hybridization between cation and anion orbitals.
By working out the microscopic conditions to be fulfilled in order to maximize
this hybridization, we identify materials in the rock-salt chalcogenide class
that are prone to undergo a topological phase transition induced by pressure
and/or alloying. Our model analysis is fully comfirmed by complementary
advanced \textit{first-principles} calculations and \textit{ab initio}-based
tight-binding simulations
Neural network distillation of orbital dependent density functional theory
Density functional theory (DFT) offers a desirable balance between quantitative accuracy and computational efficiency in practical many-electron calculations. Its central component, the exchange-correlation energy functional, has been approximated with increasing levels of complexity ranging from strictly local approximations to nonlocal and orbital dependent expressions with many tuned parameters. In this paper, we formulate a general way of rewriting complex density functionals using deep neural networks in a way that allows for simplified computation of Kohn-Sham potentials as well as higher functional derivatives through automatic differentiation, enabling access to highly nonlinear response functions and forces. These goals are achieved by using a recently developed class of robust neural network models capable of modeling functionals, as opposed to functions, with explicitly enforced spatial symmetries. Functionals treated in this way are then called global density approximations and can be seamlessly integrated with existing DFT workflows. Tests are performed for a dataset featuring a large variety of molecular structures and popular meta–generalized gradient approximation density functionals, where we successfully eliminate orbital dependencies coming from the kinetic energy density, and discover a high degree of transferability to a variety of physical systems. The presented framework is general and could be extended to more complex orbital and energy dependent functionals as well as refined with specialized datasets
- …
