792 research outputs found

    Cell Biology. Clogging information flow in ALS.

    Get PDF
    Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a devastating neurodegenerative disorder that causes a progressive loss of motor neurons, leading to paralysis and death typically within 2 to 5 years of onset. There are no cures and few treatments. ALS shares some genetic and pathological overlap with another neurodegenerative disease, frontotemporal dementia (FTD), which causes changes to personality and language. Mutations in the gene called chromosome 9 open reading frame 72 (C9orf72) are the most common genetic cause of both ALS and FTD. This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on [Volume 345 on 5 September 2014], DOI: 10.1126/science.1259461

    Projective simulation for artificial intelligence

    Get PDF
    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.Comment: 22 pages, 18 figures. Close to published version, with footnotes retaine

    Changes in Energy Expenditure with Ingestion of High Protein, High Fat versus High Protein, Low Fat Meals among Underweight, Normal Weight, and Overweight Females.

    Get PDF
    Background: Metabolic rate is known to rise above basal levels after eating, especially following protein consumption. Yet, this postprandial rise in metabolism appears to vary among individuals. This study examined changes in energy expenditure in response to ingestion of a high protein, high fat (HPHF) meal versus an isocaloric high protein, low fat (HPLF) meal in underweight, normal weight, or overweight females (n = 21) aged 19–28 years. Methods: Energy expenditure, measured using indirect calorimetry, was assessed before and every 30 minutes for 3.5 hours following consumption of the meals on two separate occasions. Height and weight were measured using standard techniques. Body composition was measured using bioelectrical impedance analysis. Results: Significant positive correlations were found between body mass index (BMI) and baseline metabolic rate (MR) (r = 0.539; p = 0.017), between body weight and baseline MR (r = 0.567; p = 0.011), between BMI and average total change in MR (r = 0.591; p = 0.008), and between body weight and average total change in MR (r = 0.464; p = 0.045). Metabolic rate (kcal/min) was significantly higher in the overweight group than the normal weight group, which was significantly higher than the underweight group across all times and treatments. However, when metabolic rate was expressed per kg fat free mass (ffm), no significant difference was found in postprandial energy expenditure between the overweight and normal groups. Changes in MR (kcal/min and kcal/min/kg ffm) from the baseline rate did not significantly differ in the underweight (n = 3) or in the overweight subjects (n = 5) following consumption of either meal at any time. Changes in MR (kcal/min and kcal/min/kg ffm) from baseline were significantly higher in normal weight subjects (n = 11) across all times following consumption of the HPHF meal versus the HPLF meal. Conclusion: There is no diet-induced thermogenic advantage between the HPHF and HPLF meals in overweight and underweight subjects. In contrast, in normal weight subjects, ingestion of a HPHF meal significantly increases MR (69.3 kcal/3.5 hr) versus consumption of a HPLF meal and provides a short-term metabolic advantage

    SYNTHESIS, CHARACTERIZATION AND BIOCIDAL ACTIVITY OF NOVEL HALOGENATED -4-[(SUBSTITUTED-BENZOTHIAZOL-2-YL) HYDRAZONO]-2- (SUBSTITUTED-PHENYL)-5-METHYL /ETHOXY -2,4-DIHYDRO-PYRAZOL-3-ONE DERIVATIVES

    Get PDF
    ABSTRACT Some new 4-[(substituted-benzothiazol-2-yl)hydrazono]-2-(substituted-phenyl)-5-methyl/ethoxy-2,4-dihydro-pyrazol-3-one(4) have been synthesized by reacting substituted 2-amino benzothiazol (1) with acetoacetic ester and malonic ester (2). 2-[(substituted-benzothiazol-2-yl)hydrazono]-3-oxo-butyric acid ethyl ester and 2-[(substituted-benzothiazol-2-yl)hydrazono]-malonic acid diethyl ester (3) react with different hydrazines to give the title compounds(4). These compounds are evaluated for their antifungal and insecticidal activity

    Perceived need for mental health care among non-western labour migrants

    Get PDF
    Background There is a supposed higher prevalence of common mental disorders among many migrant groups. At the same time, problems are reported regarding underutilisation of mental health services by migrants. Since perceived need for care is a powerful predictor of actual care utilisation, we aimed to study the hypothesis that, given the same level of mental morbidity, non-Western migrants would perceive less need for mental health care than ethnic Dutch residents. Additionally, we studied the extent to which needs are met in both groups, as well as several possible barriers to care. Methods A cross-sectional study with data from the 2004/2005 Amsterdam Health Monitor. Data were complete from 626 ethnic Dutch and non-Western (Turkish and Moroccan) labour migrants. Respondents participated in a structured interview in their own language, which included the perceived need for care questionnaire (PNCQ) and the composite international diagnostic interview (CIDI) version 2.1 for anxiety and depressive disorders. Results Perceived need was much higher among Turkish migrants. Among Moroccans the perceived need was comparable to ethnic Dutch. Turkish migrants also reported that needs were met less often than ethnic Dutch. Differences were explained by a higher prevalence of common mental disorders and higher symptom levels among Turkish. When differences in mental morbidity were taken into account, Moroccans perceived less need for information, drugs, referral to specialised mental health care, or for counselling. The most important barrier to care in all ethnic groups was the preference to solve the problem on one’s own. Conclusion In case of similar mental morbidity, perceived need for care was lower than among ethnic Dutch. The results did not support the hypothesis that in case of similar mental distress, needs of migrants were less often met than needs of ethnic Dutch

    Phosphatase and tensin homologue: a therapeutic target for SMA

    Get PDF
    Spinal muscular atrophy (SMA) is one of the most common juvenile neurodegenerative diseases, which can be associated with child mortality. SMA is caused by a mutation of ubiquitously expressed gene, Survival Motor Neuron1 (SMN1), leading to reduced SMN protein and the motor neuron death. The disease is incurable and the only therapeutic strategy to follow is to improve the expression of SMN protein levels in motor neurons. Significant numbers of motor neurons in SMA mice and SMA cultures are caspase positive with condensed nuclei, suggesting that these cells are prone to a process of cell death called apoptosis. Searching for other potential molecules or signaling pathways that are neuroprotective for central nervous system (CNS) insults is essential for widening the scope of developmental medicine. PTEN, a Phosphatase and Tensin homologue, is a tumor suppressor, which is widely expressed in CNS. PTEN depletion activates anti-apoptotic factors and it is evident that the pathway plays an important protective role in many neurodegenerative disorders. It functions as a negative regulator of PIP3/AKT pathway and thereby modulates its downstream cellular functions through lipid phosphatase activity. Moreover, previous reports from our group demonstrated that, PTEN depletion using viral vector delivery system in SMN delta7 mice reduces disease pathology, with significant rescue on survival rate and the body weight of the SMA mice. Thus knockdown/depletion/mutation of PTEN and manipulation of PTEN medicated Akt/PKB signaling pathway may represent an important therapeutic strategy to promote motor neuron survival in SMA

    Internet Gaming Disorder Behaviors in emergent adulthood: a pilot study examining the interplay between anxiety and family cohesion

    Get PDF
    Understanding risk and protective factors associated with Internet Gaming Disorder (IGD) has been highlighted as a research priority by the American Psychiatric Association, (2013). The present study focused on the potential IGD risk effect of anxiety and the buffering role of family cohesion on this association. A sample of emerging adults all of whom were massively multiplayer online (MMO) gamers (18–29 years) residing in Australia were assessed longitudinally (face-to-face: N = 61, Mage = 23.02 years, SD = 3.43) and cross-sectionally (online: N = 64, Mage = 23.34 years, SD = 3.39). IGD symptoms were assessed using the nine-item Internet Gaming Disorder Scale-Short Form (IGDS-SF9; Pontes & Griffiths Computers in Human Behavior, 45, 137–143. https://doi.org/10.1016/j.chb.2014.12.006, 2015). The Beck Anxiety Inventory (BAI; Beck and Steer, 1990) and the balanced family cohesion scale (BFC; Olson Journal of Marital & Family Therapy, 3(1) 64–80. https://doi.org/10.1111/j.1752-0606.2009.00175.x, 2011) were applied to assess anxiety and BFC levels, respectively. Linear regressions and moderation analyses confirmed that anxiety increased IGD risk and that BFC weakened the anxiety-related IGD risk

    Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF<sup>Slmb</sup> degron

    Get PDF
    Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers
    corecore