16 research outputs found
Protein Catalyzed Capture Agents with Tailored Performance for In Vitro and In Vivo Applications
We report on peptide-based ligands matured through the protein catalyzed capture (PCC) agent method to tailor molecular binders for in vitro sensing/diagnostics and in vivo pharmacokinetics parameters. A vascular endothelial growth factor (VEGF) binding peptide and a peptide against the protective antigen (PA) protein of Bacillus anthracis discovered through phage and bacterial display panning technologies, respectively, were modified with click handles and subjected to iterative in situ click chemistry screens using synthetic peptide libraries. Each azide-alkyne cycloaddition iteration, promoted by the respective target proteins, yielded improvements in metrics for the application of interest. The anti-VEGF PCC was explored as a stable in vivo imaging probe. It exhibited excellent stability against proteases and a mean elimination in vivo half-life (T_(1/2)) of 36 min. Intraperitoneal injection of the reagent results in slow clearance from the peritoneal cavity and kidney retention at extended times, while intravenous injection translates to rapid renal clearance. The ligand competed with the commercial antibody for binding to VEGF in vivo. The anti-PA ligand was developed for detection assays that perform in demanding physical environments. The matured anti-PA PCC exhibited no solution aggregation, no fragmentation when heated to 100°C, and > 81% binding activity for PA after heating at 90°C for 1 h. We discuss the potential of the PCC agent screening process for the discovery and enrichment of next generation antibody alternatives
Protein Catalyzed Capture Agents with Tailored Performance for In Vitro and In Vivo Applications
We report on peptide-based ligands matured through the protein catalyzed capture (PCC) agent method to tailor molecular binders for in vitro sensing/diagnostics and in vivo pharmacokinetics parameters. A vascular endothelial growth factor (VEGF) binding peptide and a peptide against the protective antigen (PA) protein of Bacillus anthracis discovered through phage and bacterial display panning technologies, respectively, were modified with click handles and subjected to iterative in situ click chemistry screens using synthetic peptide libraries. Each azide-alkyne cycloaddition iteration, promoted by the respective target proteins, yielded improvements in metrics for the application of interest. The anti-VEGF PCC was explored as a stable in vivo imaging probe. It exhibited excellent stability against proteases and a mean elimination in vivo half-life (T_(1/2)) of 36 min. Intraperitoneal injection of the reagent results in slow clearance from the peritoneal cavity and kidney retention at extended times, while intravenous injection translates to rapid renal clearance. The ligand competed with the commercial antibody for binding to VEGF in vivo. The anti-PA ligand was developed for detection assays that perform in demanding physical environments. The matured anti-PA PCC exhibited no solution aggregation, no fragmentation when heated to 100°C, and > 81% binding activity for PA after heating at 90°C for 1 h. We discuss the potential of the PCC agent screening process for the discovery and enrichment of next generation antibody alternatives
A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands
We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies
The next generation of biopanning: next gen sequencing improves analysis of bacterial display libraries
Background: Bacterial surface display libraries are a popular tool for novel ligand discovery due to their ease of manipulation and rapid growth rates. These libraries typically express a scaffold protein embedded within the outer membrane with a short, surface-exposed peptide that is either terminal or is incorporated into an outer loop, and can therefore interact with and bind to substrates of interest.
Results: In this study, we employed a novel bacterial peptide display library which incorporates short 15-mer peptides on the surface of E. coli, co-expressed with the inducible red fluorescent protein DsRed in the cytosol, to investigate population diversity over two rounds of biopanning. The naive library was used in panning trials to select for binding affinity against 3D printing plastic coupons made from polylactic acid (PLA). Resulting libraries were then deep-sequenced using next generation sequencing (NGS) to investigate selection and diversity.
Conclusions: We demonstrated enrichment for PLA binding versus a sapphire control surface, analyzed population composition, and compared sorting rounds using a binding assay and fluorescence microscopy. The capability to produce and describe display libraries through NGS across rounds of selection allows a deeper understanding of population dynamics that can be better directed towards peptide discovery.This work was funded entirely by the U.S. Army Combat Capabilities Development Command Army Research Laboratory (CCDC ARL), in part through contracts with other entities for personnel: the U.S. Army Research Laboratory Postdoctoral Fellowship Program administered by the Oak Ridge Associated Universities and General Technical Services, LLC. As such, all authors were Federal Government employees or contractors when this research was completed. The study design, the collection, analysis, and interpretation of data, as well as the writing of the manuscript, were performed with CCDC ARL funds, facilities, and research personnel. The views expressed here are those of the authors and do not represent the opinions of the U.S. Army, the U.S. Department of Defense, or the U.S. Government.https://bmcbiotechnol.biomedcentral.com/articles/10.1186/s12896-019-0577-
The next generation of biopanning: next gen sequencing improves analysis of bacterial display libraries
Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) regulates TOR signaling and cell growth during Drosophila development
Simultaneous Detection of Phosphoinositide Lipids by Radioactive Metabolic Labeling
Phosphoinositide (PPI) lipids are a crucial class of low abundance signaling molecules that regulate many processes within cells. Methods that enable simultaneous detection of all PPI lipid species provide a wholistic snapshot of the PPI profile of cells, which is critical for probing PPI biology. Here we describe a method for the simultaneous measurement of cellular PPI levels by metabolically labeling yeast or mammalian cells with myo-(3)H-inositol, extracting radiolabeled glycerophosphoinositides, and separating lipid species on an anion exchange column via HPLC
Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools
Phosphatidylinositol 5-phosphate regulates invasion through binding and activation of Tiam1
Identification of blood vascular endothelial stem cells by the expression of protein C receptor
Vascular growth and remodeling are dependent on the generation of new endothelial cells from stem cells and the involvement of perivascular cells to maintain vessel integrity and function. The existence and cellular identity of vascular endothelial stem cells (VESCs) remain unclear. The perivascular pericytes in adult tissues are thought to arise from the recruitment and differentiation of mesenchymal progenitors during early development. In this study, we identified Protein C receptor-expressing (Procr(+)) endothelial cells as VESCs in multiple tissues. Procr(+) VESCs exhibit robust clonogenicity in culture, high vessel reconstitution efficiency in transplantation, long-term clonal expansion in lineage tracing, and EndMT characteristics. Moreover, Procr(+) VESCs are bipotent, giving rise to de novo formation of endothelial cells and pericytes. This represents a novel origin of pericytes in adult angiogenesis, reshaping our understanding of blood vessel development and homeostatic process. Our study may also provide a more precise therapeutic target to inhibit pathological angiogenesis and tumor growth
