1,896 research outputs found
Quantum State During and after -Symmetric Bubble Nucleation with Gravitaional Effects
We extend our previous analysis of the quantum state during and after
-symmetric bubble nucleation to the case including gravitational effects.
We find that there exists a simple relationship between the case with and
without gravitational effects. In a special case of a conformally coupled
scalar field which is massless except on the bubble wall, the state is found to
be conformally equivalent to the case without gravity.Comment: 31 pages plain Tex file, uuencoded postscript figure file is
available from [email protected] upon request, KUNS126
General Solutions for Tunneling of Scalar Fields with Quartic Potentials in de Sitter Space
The tunneling rates for scalar fields with quartic potentials in de Sitter
space in the limit of no gravitational back reaction are calculated numerically
and the results are fitted by analytic formulae.Comment: (Contours in Figure 1 corrected, two-dimensional fitting coefficient
corrected, references added.), 16 pages, KUNS 124
More varieties of hybrid inflation
It is pointed out that hybrid inflation can be implemented with the inflaton
field rolling away from the origin instead of towards it. This `inverted'
hybrid inflation has a spectral index , in contrast with ordinary
hybrid inflation which has , so a measured value of
substantially different from 1 would distinguish the two. Other generalisations
of hybrid inflation are also considered.Comment: 9 page
Comments on Noncommutative Sigma Models
We review the derivation of a noncommutative version of the nonlinear sigma
model on \CPn and it's soliton solutions for finite emphasizing the
similarities it bears to the GMS scalar field theory. It is also shown that
unlike the scalar theory, some care needs to be taken in defining the
topological charge of BPS solitons of the theory due to nonvanishing surface
terms in the energy functional. Finally it is shown that, like its commutative
analogue, the noncommutative \CPn-model also exhibits a non-BPS sector.
Unlike the commutative case however, there are some surprises in the
noncommutative case that merit further study.Comment: 22 pages, 4 figures, LaTeX (JHEP3), Minor changes, Discussion
expanded and references adde
Inflationary models with a flat potential enforced by non-abelian discrete gauge symmetries
Non-abelian discrete gauge symmetries can provide the inflaton with a flat
potential even when one takes into account gravitational strength effects. The
discreteness of the symmetries also provide special field values where
inflation can end via a hybrid type mechanism. An interesting feature of this
method is that it can naturally lead to extremely flat potentials and so, in
principle, to inflation at unusually low energy scales. Two examples of
effective field theories with this mechanism are given, one with a hybrid exit
and one with a mutated hybrid exit. They include an explicit example in which
the single field consistency condition is violated.Comment: 24 pages, uses revtex.sty, submitted to PRD (Nov. 1999) Final version
to appear in PRD. Background information on supergravity expande
Metric perturbations in two-field inflation
We study the metric perturbations produced during inflation in models with
two scalar fields evolving simultaneously. In particular, we emphasize how the
large-scale curvature perturbation on fixed energy density
hypersurfaces may not be conserved in general for multiple field inflation due
to the presence of entropy as well as adiabatic fluctuations. We show that the
usual method of solving the linearized perturbation equations is equivalent to
the recently proposed analysis of Sasaki and Stewart in terms of the perturbed
expansion along neighboring trajectories in field-space. In the case of a
separable potential it is possible to compute in the slow-roll approximation
the spectrum of density perturbations and gravitational waves at the end of
inflation. In general there is an inequality between the ratio of tensor to
scalar perturbations and the tilt of the gravitational wave spectrum, which
becomes an equality when only adiabatic perturbations are possible and
is conserved.Comment: RevTex, 9 pages, 1 uuencoded figure appended, also available on WWW
via http://star.maps.susx.ac.uk/index.htm
Analysis of symmetries in models of multi-strain infections
In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases
Possible Origin of Antimatter Regions in the Baryon Dominated Universe
We discuss the evolution of U(1) symmetric scalar field at the inflation
epoch with a pseudo Nambu-Goldstone tilt revealing after the end of exponential
expansion of the Universe. The U(1) symmetry is supposed to be associated with
baryon charge. It is shown that quantum fluctuations lead in natural way to
baryon dominated Universe with antibaryon excess regions. The range of
parameters is calculated at which the fraction of Universe occupied by
antimatter and the size of antimatter regions satisfy the observational
constraints, survive to the modern time and lead to effects, accessible to
experimental search for antimatter.Comment: 10 pages, 1 figur
Thermal photons in QGP and non-ideal effects
We investigate the thermal photon production-rates using one dimensional
boost-invariant second order relativistic hydrodynamics to find proper time
evolution of the energy density and the temperature. The effect of
bulk-viscosity and non-ideal equation of state are taken into account in a
manner consistent with recent lattice QCD estimates. It is shown that the
\textit{non-ideal} gas equation of state i.e behaviour
of the expanding plasma, which is important near the phase-transition point,
can significantly slow down the hydrodynamic expansion and thereby increase the
photon production-rates. Inclusion of the bulk viscosity may also have similar
effect on the hydrodynamic evolution. However the effect of bulk viscosity is
shown to be significantly lower than the \textit{non-ideal} gas equation of
state. We also analyze the interesting phenomenon of bulk viscosity induced
cavitation making the hydrodynamical description invalid. We include the
viscous corrections to the distribution functions while calculating the photon
spectra. It is shown that ignoring the cavitation phenomenon can lead to
erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE
The Spin Structure of the Nucleon
We present an overview of recent experimental and theoretical advances in our
understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure
- …
