48,564 research outputs found

    Cosmic Sculpture: A new way to visualise the Cosmic Microwave Background

    Full text link
    3D printing presents an attractive alternative to visual representation of physical datasets such as astronomical images that can be used for research, outreach or teaching purposes, and is especially relevant to people with a visual disability. We here report the use of 3D printing technology to produce a representation of the all-sky Cosmic Microwave Background (CMB) intensity anisotropy maps produced by the Planck mission. The success of this work in representing key features of the CMB is discussed as is the potential of this approach for representing other astrophysical data sets. 3D printing such datasets represents a highly complementary approach to the usual 2D projections used in teaching and outreach work, and can also form the basis of undergraduate projects. The CAD files used to produce the models discussed in this paper are made available.Comment: Accepted for publication in the European Journal of Physic

    Affleck-Dine Baryogenesis and heavy elements production from Inhomogeneous Big Bang Nucleosynthesis

    Full text link
    We study the impact of possible high density baryonic bubbles on the early formed QSO, IGM, and metal poor stars. Such bubbles could be created, under certain conditions, in Affleck-Dine model of baryogenesis and may occupy a relatively small fraction of space, while the dominant part of the cosmological volume has the normal observed baryon-to-photon ratio η=61010\eta = 6\cdot 10^{-10}. The value of η\eta in the bubbles, could be much larger than the usually accepted one (it might be even close to unity) without contradicting the existing data on light element abundances and the observed angular spectrum of CMBR. We find upper bounds on η\eta by comparing heavy elements' abundances produced in BBN and those of metal poor stars. We conclude that η\eta should be smaller than 10510^{-5} in some metal poor star regions.Comment: 11 pages, 4 figures, PTPTeX ; added references, changed introduction, acknowledgments and figure

    Hiding cosmic strings in supergravity D-term inflation

    Full text link
    The influence of higher-order terms in the K\"{a}hler potential of the supergravity D-term inflation model on the density perturbation is studied. We show that these terms can make the inflaton potential flatter, which lowers the energy scale of inflation under the COBE/WMAP normalization. As a result, the mass per unit length of cosmic strings, which are produced at the end of inflation, can be reduced to a harmless but detectable level without introducing a tiny Yukawa coupling. Our scenario can naturally be implemented in models with a low cut-off as in Type I or Type IIB orientifold models.Comment: 15 pages, 4 figure

    On correlation functions of integrable models associated to the six-vertex R-matrix

    Full text link
    We derive an analog of the master equation obtained recently for correlation functions of the XXZ chain for a wide class of quantum integrable systems described by the R-matrix of the six-vertex model, including in particular continuum models. This generalized master equation allows us to obtain multiple integral representations for the correlation functions of these models. We apply this method to derive the density-density correlation functions of the quantum non-linear Schrodinger model.Comment: 21 page

    On the Existence of Local Observables in Theories With a Factorizing S-Matrix

    Full text link
    A recently proposed criterion for the existence of local quantum fields with a prescribed factorizing scattering matrix is verified in a non-trivial model, thereby establishing a new constructive approach to quantum field theory in a particular example. The existence proof is accomplished by analyzing nuclearity properties of certain specific subsets of Fermionic Fock spaces.Comment: 13 pages, no figures, comment in sect. 3 adde
    corecore