792 research outputs found
Secondary beam fragments produced by 200 MeV u C ions in water and their dose contributions in carbon ion radiotherapy
Molecular dynamics study of accelerated ion-induced shock waves in biological media
We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model
Positron-neutrino correlation in the 0^+ \to 0^+ decay of ^{32}Ar
The positron-neutrino correlation in the decay of
Ar was measured at ISOLDE by analyzing the effect of lepton recoil on
the shape of the narrow proton group following the superallowed decay. Our
result is consistent with the Standard Model prediction. For vanishing Fierz
interference we find , which yields improved
constraints on scalar weak interactions
Real time monitoring of the Bragg-peak position in ion therapy by means of single photon detection
For real-time monitoring of the longitudinal position of the Bragg-peak during an ion therapy treatment, a novel non-invasive technique has been recently proposed that exploits the detection of prompt -rays issued from nuclear fragmentation. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u 12C6+ ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the carbon ion range and the prompt photon profile. Additionally, an extensive study has been performed to investigate whether a prompt neutron component may be correlated with the carbon ion range. No such correlation was found. The present paper demonstrates that a collimated set-up can be used to detect single photons by means of time-of-flight measurements, at those high energies typical for ion therapy. Moreover, the applicability of the technique both at cyclotron and synchrotron facilities is shown. It is concluded that the detected photon count rates provide sufficiently high statistics to allow real-time control of the longitudinal position of the Bragg-peak under clinical conditions
A consistent treatment for pion form factors in space-like and time-like regions
We write down some relevant matrix elements for the scattering and decay
processes of the pion by considering a quark-meson vertex function. The pion
charge and transition form factors , , and
are extracted from these matrix elements using a relativistic
quark model on the light-front. We found that, the form factors and
in the space-like region agree well with experiment.
Furthermore, the branching ratios of all observed decay modes of the neutral
pion, that are related to the form factors and
in the time-like region, are all consistent with the data as
well. Additionally, in the time-like region, which deals with the
nonvalence contribution, is also discussed.Comment: 24 pages, 6 figures, to appear in Phys. Rev.
- …
