35 research outputs found
The influence of spatial pattern on visual short-term memory for contrast
Several psychophysical studies of visual short-term memory (VSTM) have shown high-fidelity storage capacity for many properties of visual stimuli. On judgments of the spatial frequency of gratings, for example, discrimination performance does not decrease significantly, even for memory intervals of up to 30 s. For other properties, such as stimulus orientation and contrast, however, such “perfect storage” behavior is not found, although the reasons for this difference remain unresolved. Here, we report two experiments in which we investigated the nature of the representation of stimulus contrast in VSTM using spatially complex, two-dimensional random-noise stimuli. We addressed whether information about contrast per se is retained during the memory interval by using a test stimulus with the same spatial structure but either the same or the opposite local contrast polarity, with respect to the comparison (i.e., remembered) stimulus. We found that discrimination thresholds got steadily worse with increasing duration of the memory interval. Furthermore, performance was better when the test and comparison stimuli had the same local contrast polarity than when they were contrast-reversed. Finally, when a noise mask was introduced during the memory interval, its disruptive effect was maximal when the spatial configuration of its constituent elements was uncorrelated with those of the comparison and test stimuli. These results suggest that VSTMfor contrast is closely tied to the spatial configuration of stimuli and is not transformed into a more abstract representation
Strabismus and amblyopia disrupt spatial perception but not the fidelity of cortical maps in human primary visual cortex
Amblyopia is a common disorder of spatial vision and is frequently associated with the presence of anisometropia, strabismus, or both, during visual development. For highly visible stimuli, subjects with strabismic amblyopia often report marked spatial distortions, but the neural basis of this supra-threshold deficit is not well understood. Here, we used a combination of behavioural measurements and visual field mapping with high spatial-resolution functional magnetic resonance imaging (fMRI) at 7 T to assess perceptual distortions in 12 participants with strabismic amblyopia and 9 control subjects. We measured both behavioural and cortical visual field maps monocularly through each eye. Although amblyopic subjects showed increased perceptual distortions, the layout of V1 maps, as measured through the eccentricity and size of population receptive fields, was largely unaltered compared to controls, with no discernible difference in cortical magnification between groups. This suggests that disruptions to V1 retinotopy do not explain the perceptual distortions experienced by amblyopes
Changing Human Visual Field Organization from Early Visual to Extra-Occipital Cortex
BACKGROUND: The early visual areas have a clear topographic organization, such that adjacent parts of the cortical surface represent distinct yet adjacent parts of the contralateral visual field. We examined whether cortical regions outside occipital cortex show a similar organization. METHODOLOGY/PRINCIPAL FINDINGS: The BOLD responses to discrete visual field locations that varied in both polar angle and eccentricity were measured using two different tasks. As described previously, numerous occipital regions are both selective for the contralateral visual field and show topographic organization within that field. Extra-occipital regions are also selective for the contralateral visual field, but possess little (or no) topographic organization. A regional analysis demonstrates that this weak topography is not due to increased receptive field size in extra-occipital areas. CONCLUSIONS/SIGNIFICANCE: A number of extra-occipital areas are identified that are sensitive to visual field location. Neurons in these areas corresponding to different locations in the contralateral visual field do not demonstrate any regular or robust topographic organization, but appear instead to be intermixed on the cortical surface. This suggests a shift from processing that is predominately local in visual space, in occipital areas, to global, in extra-occipital areas. Global processing fits with a role for these extra-occipital areas in selecting a spatial locus for attention and/or eye-movements
Expert Financial Advice Neurobiologically “Offloads” Financial Decision-Making under Risk
BACKGROUND: Financial advice from experts is commonly sought during times of uncertainty. While the field of neuroeconomics has made considerable progress in understanding the neurobiological basis of risky decision-making, the neural mechanisms through which external information, such as advice, is integrated during decision-making are poorly understood. In the current experiment, we investigated the neurobiological basis of the influence of expert advice on financial decisions under risk. METHODOLOGY/PRINCIPAL FINDINGS: While undergoing fMRI scanning, participants made a series of financial choices between a certain payment and a lottery. Choices were made in two conditions: 1) advice from a financial expert about which choice to make was displayed (MES condition); and 2) no advice was displayed (NOM condition). Behavioral results showed a significant effect of expert advice. Specifically, probability weighting functions changed in the direction of the expert's advice. This was paralleled by neural activation patterns. Brain activations showing significant correlations with valuation (parametric modulation by value of lottery/sure win) were obtained in the absence of the expert's advice (NOM) in intraparietal sulcus, posterior cingulate cortex, cuneus, precuneus, inferior frontal gyrus and middle temporal gyrus. Notably, no significant correlations with value were obtained in the presence of advice (MES). These findings were corroborated by region of interest analyses. Neural equivalents of probability weighting functions showed significant flattening in the MES compared to the NOM condition in regions associated with probability weighting, including anterior cingulate cortex, dorsolateral PFC, thalamus, medial occipital gyrus and anterior insula. Finally, during the MES condition, significant activations in temporoparietal junction and medial PFC were obtained. CONCLUSIONS/SIGNIFICANCE: These results support the hypothesis that one effect of expert advice is to "offload" the calculation of value of decision options from the individual's brain
Dynamic Spatial Coding within the Dorsal Frontoparietal Network during a Visual Search Task
To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting) and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect
Neural responses to Mooney images reveal a modular representation of faces in human visual cortex
The way in which information about objects is represented in visual cortex remains controversial. One model of human object recognition poses that information is processed in modules, highly specialised for different categories of objects; an opposing model appeals to a distributed representation across a large network of visual areas. We addressed this debate by monitoring activity in face- and object-selective areas while human subjects viewed ambiguous face stimuli (Mooney faces). The measured neural response in the face-selective region of the fusiform gyrus was greater when subjects reported seeing a face than when they perceived the image as a collection of blobs. In contrast, there was no difference in magnetic resonance response between face and no-face perceived events in either the face-selective voxels of the superior temporal sulcus or the object-selective voxels of the parahippocampal gyrus and lateral occipital complex. These results challenge the concept that neural representation of faces is distributed and overlapping and suggest that the fusiform gyrus is tightly linked to the awareness of face
Neural responses to Mooney images reveal a modular representation of faces in human visual cortex
The way in which information about objects is represented in visual cortex remains controversial. One model of human object recognition poses that information is processed in modules, highly specialised for different categories of objects; an opposing model appeals to a distributed representation across a large network of visual areas. We addressed this debate by monitoring activity in face- and object-selective areas while human subjects viewed ambiguous face stimuli (Mooney faces). The measured neural response in the face-selective region of the fusiform gyrus was greater when subjects reported seeing a face than when they perceived the image as a collection of blobs. In contrast, there was no difference in magnetic resonance response between face and no-face perceived events in either the face-selective voxels of the superior temporal sulcus or the object-selective voxels of the parahippocampal gyrus and lateral occipital complex. These results challenge the concept that neural representation of faces is distributed and overlapping and suggest that the fusiform gyrus is tightly linked to the awareness of face
In pursuit of delay-related brain activity for anticipatory eye movements
How the brain stores motion information and subsequently uses it to follow a moving target is largely unknown. This is mainly due to previous fMRI studies using paradigms in which the eye movements cannot be segregated from the storage of this motion information. To avoid this problem we used a novel paradigm designed in our lab in which we interlaced a delay (2, 4 or 6 seconds) between the 1st and 2nd presentation of a moving stimulus. Using this design we could examine brain activity during a delay period using fMRI and have subsequently found a number of brain areas that reveal sustained activity during predictive pursuit. These areas include, the V5 complex and superior parietal lobe. This study provides new evidence for the network involved in the storage of visual information to generate early motor responses in pursuit
Differential roles for frontal eye fields (FEFs) and intraparietal sulcus (IPS) in visual working memory and visual attention
Cortical activity was measured with functional magnetic resonance imaging to probe the involvement of the superior precentral sulcus (including putative human frontal eye fields, FEF) and the intraparietal sulcus (IPS) in visual short term memory and visual attention. In two experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. An earlier study (Offen, Schluppeck, & Heeger, 2009) had found a dissociation in early visual cortex that suggested different computational mechanisms underlying the two processes. In contrast, the results reported here show that the patterns of activation in prefrontal and parietal cortex were different from one another but were similar for the two tasks. In particular, the FEF showed evidence for sustained delay-period activity for both the working memory and the attention task, while the IPS did not show evidence for sustained delay-period activity for either task. The results imply differential roles for the FEF and IPS in these tasks; the results also suggest that feedback of sustained activity from frontal cortex to visual cortex might be gated by task demands
