186 research outputs found

    Effects of Noise on Galaxy Isophotes

    Get PDF
    The study of shapes of the images of objects is an important issue not only because it reveals its dynamical state but also it helps to understand the object's evolutionary history. We discuss a new technique in cosmological image analysis which is based on a set of non-parametric shape descriptors known as the Minkowski Functionals (MFs). These functionals are extremely versatile and under some conditions give a complete description of the geometrical properties of objects. We believe that MFs could be a useful tool to extract information about the shapes of galaxies, clusters of galaxies and superclusters. The information revealed by MFs can be utilized along with the knowledge obtained from currently popular methods and thus could improve our understanding of the true shapes of cosmological objects.Comment: 3 pages, 1 figure, to appear in "The IGM/Galaxy Connection - The Distribution of Baryons at z=0" Conference Proceeding

    Two-State Migration of DNA in a structured Microchannel

    Get PDF
    DNA migration in topologically structured microchannels with periodic cavities is investigated experimentally and with Brownian dynamics simulations of a simple bead-spring model. The results are in very good agreement with one another. In particular, the experimentally observed migration order of Lambda- and T2-DNA molecules is reproduced by the simulations. The simulation data indicate that the mobility may depend on the chain length in a nonmonotonic way at high electric fields. This is found to be the signature of a nonequilibrium phase transition between two different migration states, a slow one and a fast one, which can also be observed experimentally under appropriate conditions.Comment: Revised edition corresponding to the comments by the referees, submitted to Physical Review

    Disentangling the Cosmic Web I: Morphology of Isodensity Contours

    Get PDF
    We apply Minkowski functionals and various derived measures to decipher the morphological properties of large-scale structure seen in simulations of gravitational evolution. Minkowski functionals of isodensity contours serve as tools to test global properties of the density field. Furthermore, we identify coherent objects at various threshold levels and calculate their partial Minkowski functionals. We propose a set of two derived dimensionless quantities, planarity and filamentarity, which reduce the morphological information in a simple and intuitive way. Several simulations of the gravitational evolution of initial power-law spectra provide a framework for systematic tests of our method.Comment: 26 pages including 12 figures. Accepted for publication in Ap

    Пористая структура продуктов электрохимического синтеза на переменном токе нанодисперсных оксидов олова

    Get PDF
    Методами электронной микроскопии и низкотемпературной адсорбции азота изучена пористая структура продуктов электролиза металлического олова на переменном токе промышленной частоты. Установлено, что продукты синтеза характеризуются высокими значениями удельной площади поверхности и мезапористой структурой. Показано, что средний размер частиц варьирует в интервале 10…30 нм

    A global descriptor of spatial pattern interaction in the galaxy distribution

    Full text link
    We present the function J as a morphological descriptor for point patterns formed by the distribution of galaxies in the Universe. This function was recently introduced in the field of spatial statistics, and is based on the nearest neighbor distribution and the void probability function. The J descriptor allows to distinguish clustered (i.e. correlated) from ``regular'' (i.e. anti-correlated) point distributions. We outline the theoretical foundations of the method, perform tests with a Matern cluster process as an idealised model of galaxy clustering, and apply the descriptor to galaxies and loose groups in the Perseus-Pisces Survey. A comparison with mock-samples extracted from a mixed dark matter simulation shows that the J descriptor can be profitably used to constrain (in this case reject) viable models of cosmic structure formation.Comment: Significantly enhanced version, 14 pages, LaTeX using epsf, aaspp4, 7 eps-figures, accepted for publication in the Astrophysical Journa

    Testing Gaussianity on Archeops Data

    Full text link
    A Gaussianity analysis using a goodness-of-fit test and the Minkowski functionals on the sphere has been performed to study the measured Archeops Cosmic Microwave Background (CMB) temperature anisotropy data for a 143 GHz Archeops bolometer. We consider large angular scales, greater than 1.8 degrees, and a large fraction of the North Galactic hemisphere, around 16%, with a galactic latitude b > 15 degrees. The considered goodness-of-fit test, first proposed by Rayner & Best (1989), has been applied to the data after a signal-to-noise decomposition. The three Minkowski functionals on the sphere have been used to construct a chi-square statistic using different thresholds. The first method has been calibrated using simulations of Archeops data containing the CMB signal and instrumental noise in order to check its asymptotic convergence. Two kind of maps produced with two different map-making techniques (coaddition and Mirage) have been analysed. Archeops maps for both Mirage and coaddition map-making, have been found to be compatible with Gaussianity. From these results we can exclude a dust and atmospheric contamination larger than 7.8% (90% CL). Also the non-linear coupling parameter f_{nl} can be constrained to be -800 < f_{nl} < 1100 at the 95% CL and on angular scales of 1.8 degrees. For comparison, the same method has been applied to data from the NASA WMAP satellite in the same region of sky. The 1-year and 3-year releases have been used. Results are compatible with those obtained with Archeops, implying in particular an upper limit for f_{nl} on degree angular scales.Comment: A&A accepted. The limits on the contamination and the fnl parameter have been improve

    Hunting for Primordial Non-Gaussianity in the Cosmic Microwave Background

    Full text link
    Since the first limit on the (local) primordial non-Gaussianity parameter, fNL, was obtained from COBE data in 2002, observations of the CMB have been playing a central role in constraining the amplitudes of various forms of non-Gaussianity in primordial fluctuations. The current 68% limit from the 7-year WMAP data is fNL=32+/-21, and the Planck satellite is expected to reduce the uncertainty by a factor of four in a few years from now. If fNL>>1 is found by Planck with high statistical significance, all single-field models of inflation would be ruled out. Moreover, if the Planck satellite finds fNL=30, then it would be able to test a broad class of multi-field models using the four-point function (trispectrum) test of tauNL>=(6fNL/5)^2. In this article, we review the methods (optimal estimator), results (WMAP 7-year), and challenges (secondary anisotropy, second-order effect, and foreground) of measuring primordial non-Gaussianity from the CMB data, present a science case for the trispectrum, and conclude with future prospects.Comment: 33 pages, 4 figures. Invited review, accepted for publication in the CQG special issue on nonlinear cosmological perturbations. (v2) References added. More clarifications are added to the second-order effect and the multi-field consistency relation, tauNL>=(6fNL/5)^2

    Disentangling correlated scatter in cluster mass measurements

    Full text link
    The challenge of obtaining galaxy cluster masses is increasingly being addressed by multiwavelength measurements. As scatters in measured cluster masses are often sourced by properties of or around the clusters themselves, correlations between mass scatters are frequent and can be significant, with consequences for errors on mass estimates obtained both directly and via stacking. Using a high resolution 250 Mpc/h side N-body simulation, combined with proxies for observational cluster mass measurements, we obtain mass scatter correlations and covariances for 243 individual clusters along ~96 lines of sight each, both separately and together. Many of these scatters are quite large and highly correlated. We use principal component analysis (PCA) to characterize scatter trends and variations between clusters. PCA identifies combinations of scatters, or variations more generally, which are uncorrelated or non-covariant. The PCA combination of mass measurement techniques which dominates the mass scatter is similar for many clusters, and this combination is often present in a large amount when viewing the cluster along its long axis. We also correlate cluster mass scatter, environmental and intrinsic properties, and use PCA to find shared trends between these. For example, if the average measured richness, velocity dispersion and Compton decrement mass for a cluster along many lines of sight are high relative to its true mass, in our simulation the cluster's mass measurement scatters around this average are also high, its sphericity is high, and its triaxiality is low. Our analysis is based upon estimated mass distributions for fixed true mass. Extensions to observational data would require further calibration from numerical simulations, tuned to specific observational survey selection functions and systematics.Comment: 18 pages, 12 figures, final version to appear in MNRAS, helpful changes from referee and others incorporate

    Dark Energy from structure: a status report

    Full text link
    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein's theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (`morphon field') modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59 pages, 2 figures; matches published versio

    Planck 2013 results. III. LFI systematic uncertainties

    Get PDF
    We present the current estimate of instrumental and systematic effect uncertainties for the Planck-Low Frequency Instrument relevant to the first release of the Planck cosmological results. We give an overview of the main effects and of the tools and methods applied to assess residuals in maps and power spectra. We also present an overall budget of known systematic effect uncertainties, which are dominated sidelobe straylight pick-up and imperfect calibration. However, even these two effects are at least two orders of magnitude weaker than the cosmic microwave background (CMB) fluctuations as measured in terms of the angular temperature power spectrum. A residual signal above the noise level is present in the multipole range <20\ell<20, most notably at 30 GHz, and is likely caused by residual Galactic straylight contamination. Current analysis aims to further reduce the level of spurious signals in the data and to improve the systematic effects modelling, in particular with respect to straylight and calibration uncertainties.Comment: Accepted for publication by A&
    corecore