28,427 research outputs found
Dyson-Schwinger Equations - aspects of the pion
The contemporary use of Dyson-Schwinger equations in hadronic physics is
exemplified via applications to the calculation of pseudoscalar meson masses,
and inclusive deep inelastic scattering with a determination of the pion's
valence-quark distribution function.Comment: 4 pages. Contribution to the Proceedings of ``DPF 2000,'' the Meeting
of the Division of Particles and Fields of the American Physical Society,
August 9-12, 2000, Department of Physics, the Ohio State University,
Columbus, Ohi
Folding Polyominoes into (Poly)Cubes
We study the problem of folding a polyomino into a polycube , allowing
faces of to be covered multiple times. First, we define a variety of
folding models according to whether the folds (a) must be along grid lines of
or can divide squares in half (diagonally and/or orthogonally), (b) must be
mountain or can be both mountain and valley, (c) can remain flat (forming an
angle of ), and (d) must lie on just the polycube surface or can
have interior faces as well. Second, we give all the inclusion relations among
all models that fold on the grid lines of . Third, we characterize all
polyominoes that can fold into a unit cube, in some models. Fourth, we give a
linear-time dynamic programming algorithm to fold a tree-shaped polyomino into
a constant-size polycube, in some models. Finally, we consider the triangular
version of the problem, characterizing which polyiamonds fold into a regular
tetrahedron.Comment: 30 pages, 19 figures, full version of extended abstract that appeared
in CCCG 2015. (Change over previous version: Fixed a missing reference.
Electronically highly cubic conditions for Ru in alpha-RuCl3
We studied the local Ru 4d electronic structure of alpha-RuCl3 by means of
polarization dependent x-ray absorption spectroscopy at the Ru-L2,3 edges. We
observed a vanishingly small linear dichroism indicating that electronically
the Ru 4d local symmetry is highly cubic. Using full multiplet cluster
calculations we were able to reproduce the spectra excellently and to extract
that the trigonal splitting of the t2g orbitals is -12 meV, i.e.
negligible as compared to the Ru 4d spin-orbit coupling constant. Consistent
with our magnetic circular dichroism measurements, we found that the ratio of
the orbital and spin moments is 2.0, the value expected for a Jeff = 1/2 ground
state. We have thus shown that as far as the Ru 4d local properties are
concerned, alpha-RuCl3 is an ideal candidate for the realization of Kitaev
physics
Prospects for multiwavelength polarization observations of GRB afterglows and the case GRB 030329
We explore the prospects for simultaneous, broad-band, multiwavelength
polarimetric observations of GRB afterglows. We focus on the role of cosmic
dust in GRB host galaxies on the observed percentage polarization of afterglows
in the optical/near-infrared bands as a function of redshift. Our driving point
is the afterglow of GRB 030329, for which we obtained polarimetric data in the
R band and K band simultaneously about 1.5 days after the burst. We argue that
polarimetric observations can be very sensitive to dust in a GRB host, because
dust can render the polarization of an afterglow wavelength-dependent. We
discuss the consequences for the interpretation of observational data and
emphasize the important role of very early polarimetric follow-up observations
in all bands, when afterglows are still bright, to study the physical
properties of dust and magnetic fields in high-z galaxies.Comment: accepted for publication in Astronomy & Astrophysic
AGN Jet-induced Feedback in Galaxies. II. Galaxy colours from a multicloud simulation
We study the feedback from an AGN on stellar formation within its host
galaxy, mainly using one high resolution numerical simulation of the jet
propagation within the interstellar medium of an early-type galaxy. In
particular, we show that in a realistic simulation where the jet propagates
into a two-phase ISM, star formation can initially be slightly enhanced and
then, on timescales of few million years, rapidly quenched, as a consequence
both of the high temperatures attained and of the reduction of cloud mass
(mainly due to Kelvin-Helmholtz instabilities). We then introduce a model of
(prevalently) {\em negative} AGN feedback, where an exponentially declining
star formation is quenched, on a very short time scale, at a time t_AGN, due to
AGN feedback. Using the Bruzual & Charlot (2003) population synthesis model and
our star formation history, we predict galaxy colours from this model and match
them to a sample of nearby early-type galaxies showing signs of recent episodes
of star formation (Kaviraj et al. 2007). We find that the quantity t_gal -
t_AGN, where t_gal is the galaxy age, is an excellent indicator of the presence
of feedback processes, and peaks significantly around t_gal - t_AGN \approx
0.85 Gyr for our sample, consistent with feedback from recent energy injection
by AGNs in relatively bright (M_{B} \lsim -19) and massive nearby early-type
galaxies. Galaxies that have experienced this recent feedback show an
enhancement of 3 magnitudes in NUV(GALEX)-g, with respect to the unperturbed,
no-feedback evolution. Hence they can be easily identified in large combined
near UV-optical surveys.Comment: 18 pages, 16 figures, accepted for publication on MNRAS. This version
includes revisions after the referee's repor
Effects of Backflow Correlation in the Three-Dimensional Electron Gas: Quantum Monte Carlo Study
The correlation energy of the homogeneous three-dimensional interacting
electron gas is calculated using the variational and fixed-node diffusion Monte
Carlo methods, with trial functions that include backflow and three-body
correlations. In the high density regime the effects of backflow dominate over
those due to three-body correlations, but the relative importance of the latter
increases as the density decreases. Since the backflow correlations vary the
nodes of the trial function, this leads to improved energies in the fixed-node
diffusion Monte Carlo calculations. The effects are comparable to those found
for the two-dimensional electron gas, leading to much improved variational
energies and fixed-node diffusion energies equal to the release-node energies
of Ceperley and Alder within statistical and systematic errors.Comment: 14 pages, 5 figures, submitted to Physical Review
Spin-drift transport and its applications
We study the generation of non-equilibrium spin currents in systems with
spatially-inhomogeneous magnetic potentials. For sufficiently high current
densities, the spin polarization can be transported over distances
significantly exceeding the intrinsic spin-diffusion length. This enables
applications that are impossible within the conventional spin-diffusion regime.
Specifically, we propose dc measurement schemes for the carrier spin relaxation
times, and , as well as demonstrate the possibility of spin species
separation by driving current through a region with an inhomogeneous magnetic
potential.Comment: 4 pages, 2 eps figure
Measurements of a low temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2
Thermal noise arising from mechanical dissipation in oxide coatings is a
major limitation to many precision measurement systems, including optical
frequency standards, high resolution optical spectroscopy and interferometric
gravity wave detectors. Presented here are measurements of dissipation as a
function of temperature between 7 K and 290 K in ion-beam sputtered Ta2O5 doped
with TiO2, showing a loss peak at 20 K. Analysis of the peak provides the first
evidence of the source of dissipation in doped Ta2O5 coatings, leading to
possibilities for the reduction of thermal noise effects
Elastic Constants of Quantum Solids by Path Integral Simulations
Two methods are proposed to evaluate the second-order elastic constants of
quantum mechanically treated solids. One method is based on path-integral
simulations in the (NVT) ensemble using an estimator for elastic constants. The
other method is based on simulations in the (NpT) ensemble exploiting the
relationship between strain fluctuations and elastic constants. The strengths
and weaknesses of the methods are discussed thoroughly. We show how one can
reduce statistical and systematic errors associated with so-called primitive
estimators. The methods are then applied to solid argon at atmospheric
pressures and solid helium 3 (hcp, fcc, and bcc) under varying pressures. Good
agreement with available experimental data on elastic constants is found for
helium 3. Predictions are made for the thermal expectation value of the kinetic
energy of solid helium 3.Comment: 9 pages doublecolumn, 6 figures, submitted to PR
- …
