64 research outputs found
Preliminary inconclusive results of a randomised double blinded cross-over pilot trial in long-term-care dwelling elderly assessing the feasibility of stochastic resonance whole-body vibration
Background
This randomised double-blinded controlled cross-over pilot study examined feasibility and preliminary effects of stochastic resonance whole-body vibration training applied in long term care elderly.
Findings
Nine long term care elderly were recruited and randomized to group A (6 Hz, Noise 4 SR-WBV/ Sham) or B (Sham / 1 Hz, Noise 1 SR-WBV). Feasibility outcomes included recruitment rate, attrition, adherence and safety. Physical performance outcomes focused on the Expanded Timed Get Up-and-Go (ETGUG) test, the Short Physical Performance Battery (SPPB), and lower extremity muscle strength.
Of 24 subjects initially approached 9 started and 5 completed the study resulting in 37.5 recruitment, 44.4 attrition and 81.7 % adherence rates. No adverse events were reported. There is more evidence of improved performance levels in the SR-WBV treatment group with significant differences in average change for isometric rate of force development (p = 0.016 left leg; p = 0.028 right leg). No statistical significance was reached for other parameters.
Conclusions
The findings of this study indicate that the used training protocol for long term care elderly is feasible, however, requires more closely monitoring of participants; e.g. needs protocol modifications that target improved compliance with the intervention in this setting. SR-WBV shows beneficial effects on physical performance for those adhering to the intervention.
Trial registration
U.S. National Institutes of Health NCT01543243
Physical activity (PA) for elderly is one of the major elements for general health prevention [1] and inactive or sedentary elderly should increase their PA [2]. Despite the known benefits of PA, residents living in long-term care (LTC) are relatively sedentary [3, 4]. Low baseline fitness and mobility levels in (pre-)frail elderly should be considered when starting exercise and this exercise should be adapted to the physical capabilities of these individuals [5].
Whole body vibration (WBV) seems a safe and beneficial type of balance exercise [6, 7]. Pilot studies showed that stochastic resonance WBV (SR-WBV) in (untrained) elderly is both safe and feasible [8, 9]. SR-WBV might also be valuable for (pre-)frail elderly in LTC where the neuromuscular systems of the trainees might not be able withstanding higher loading and long training sessions [8]. However, confirmatory results of such positive effects of WBV in LTC settings is not available and no evidence concerning the feasibility of SR-WBV in LTC dwelling elderly exists.
This study tested the feasibility and effects of SR-WBV training in LTC elderly with the aim to (I) evaluate the intervention process and the ability to recruit and retain LTC elderly for such an intervention, and (II) assess the impact of 4-week SR-WBV on physical performance.
Finding
Why fencers should bounce: a new method of movement to engage the stretch-shortening cycle
While teaching a heel first contact style of footwork in fencing (also referred to as toe contribution avoidance) is in keeping with long standing traditions, it is not conducive to today’s modern style of fast paced and explosive fencing. Equally, fencers towards the elite-end seem to be gradually adopting a more spring-based style, as their body progressively and organically transitions to “ball of the foot” based footwork, in order for them to fence competitively in the manner they have intuitively associated with success. Therefore, if from a young age fencers are taught to make full use of the stretch shortening cycle (SSC) via “bouncing” or simply by initiating movement via the ball of the foot, this will expedite the learning process. It will demonstrate to them how the SSC can be used to move at greater speed, cover greater distances when advancing, retreating and lunging, and conserve the much-needed energy required to compete over day long competitions. This paper details the mechanistic underpinnings of the SSC and its application to the modern day fencer
<雑録>坐礁船舶ノ救助ト共同海損
Background
Aging is associated with loss of balance and activity in daily life. It impacts postural control and increases the risk of falls. The current study was conducted to determine the feasibility and long-term impact of stochastic resonance whole-body vibration (SR-WBV) on static and dynamic balance and reaction time among elderly individuals.
Methods
A randomized crossover pilot study with blinding of the participants. Twenty elderly were divided into group A (SR-WBV 5 Hz, Noise 4/SR-WBV 1 Hz, Noise 1) or group B (SR-WBV 1 Hz, Noise 1/SR-WBV 5 Hz, Noise 1). Feasibility outcomes included recruitment, compliance and safety. Secondary outcomes were Semi-Tandem Stand (STS), Functional Reach Test (FRT), Expanded Timed Get Up-and-Go (ETGUG), walking under single (ST) & dual task (DT) conditions, hand and foot reaction time (RTH/RTF). Puri and Sen Rank-Order L Statistics were used to analyse carry-over effects. To analyse SR-WBV effects Wilcoxon signed-ranked tests were used.
Results
With good recruitment rate (55%) and compliance (attrition 15%; adherence 85%) rates the intervention was deemed feasible. Three participants dropped out, two due to knee pain and one for personal reasons. ETGUG 0 to 2 m (p = 0.143; ES: 0.36) and ETGUG total time (p = 0.097; ES: 0.40) showed medium effect sizes.
Conclusions
Stochastic resonance training is feasible in untrained elderly resulting in good recruitment and compliance. Low volume SR-WBV exercises over 12 training sessions with 5 Hz, Noise 4 seems a sufficient stimulus to improve ETGUG total time. The stimulation did not elicit changes in other outcomes.
Trial registration
This trial has been registered at the U.S. National Institutes of Health under ClinicalTrials.gov: NCT01045746
Relationships between Challenge Tour golfers’ clubhead velocity and force producing capabilities during a countermovement jump and isometric mid-thigh pull
A number of field-based investigations have evidenced practically significant relationships between clubhead velocity (CHV), vertical jump performance and maximum strength. Unfortunately, whilst these investigations provide a great deal of external validity, they are unable to ascertain vertical ground reaction force (vGRF) variables that may relate to golfers’ CHVs. This investigation aimed to assess if the variance in European Challenge Tour golfers’ CHVs could be predicted by countermovement jump (CMJ) positive impulse (PI), isometric mid-thigh pull (IMTP) peak force (PF) and rate of force development (RFD) from 0–50 ms, 0–100 ms, 0–150 ms and 0–200 ms. Thirty-one elite level European Challenge Tour golfers performed a CMJ and IMTP on dual force plates at a tournament venue, with CHV measured on a driving range. Hierarchical multiple regression results indicated that the variance in CHV was significantly predicted by all four models (model one R2 = 0.379; model two R2 = 0.392, model three R2 = 0.422, model four R2 = 0.480), with Akaike’s information criterion indicating that model one was the best fit. Individual standardised beta coefficients revealed that CMJ PI was the only significant variable, accounting for 37.9% of the variance in European Challenge Tour Golfers’ CHVs
Preliminary inconclusive results of a randomised double blinded cross-over pilot trial in long-term-care dwelling elderly assessing the feasibility of stochastic resonance whole-body vibration
Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-analysis
- …
