2,270 research outputs found
Field Tuning the G-Factor in InAs Nanowire Double Quantum Dots
We study the effects of magnetic and electric fields on the g-factors of
spins confined in a two-electron InAs nanowire double quantum dot. Spin
sensitive measurements are performed by monitoring the leakage current in the
Pauli blockade regime. Rotations of single spins are driven using
electric-dipole spin resonance. The g-factors are extracted from the spin
resonance condition as a function of the magnetic field direction, allowing
determination of the full g-tensor. Electric and magnetic field tuning can be
used to maximize the g-factor difference and in some cases altogether quench
the EDSR response, allowing selective single spin control.Comment: Related papers at http://pettagroup.princeton.ed
Bondi-Metzner-Sachs symmetry, holography on null-surfaces and area proportionality of "light-slice" entropy
It is shown that certain kinds of behavior, which hitherto were expected to
be characteristic for classical gravity and quantum field theory in curved
spacetime, as the infinite dimensional Bondi-Metzner-Sachs symmetry, holography
on event horizons and an area proportionality of entropy, have in fact an
unnoticed presence in Minkowski QFT. This casts new light on the fundamental
question whether the volume propotionality of heat bath entropy and the
(logarithmically corrected) dimensionless area law obeyed by
localization-induced thermal behavior are different geometric parametrizations
which share a common primordeal algebraic origin. Strong arguments are
presented that these two different thermal manifestations can be directly
related, this is in fact the main aim of this paper. It will be demonstrated
that QFT beyond the Lagrangian quantization setting receives crucial new
impulses from holography onto horizons. The present paper is part of a project
aimed at elucidating the enormous physical range of "modular localization". The
latter does not only extend from standard Hamitonian heat bath thermal states
to thermal aspects of causal- or event- horizons addressed in this paper. It
also includes the recent understanding of the crossing property of formfactors
whose intriguing similarity with thermal properties was, although sometimes
noticed, only sufficiently understood in the modular llocalization setting.Comment: 42 pages, changes, addition of new results and new references, in
this form the paper will appear in Foundations of Physic
The Pivotal Role of Causality in Local Quantum Physics
In this article an attempt is made to present very recent conceptual and
computational developments in QFT as new manifestations of old and well
establihed physical principles. The vehicle for converting the
quantum-algebraic aspects of local quantum physics into more classical
geometric structures is the modular theory of Tomita. As the above named
laureate to whom I have dedicated has shown together with his collaborator for
the first time in sufficient generality, its use in physics goes through
Einstein causality. This line of research recently gained momentum when it was
realized that it is not only of structural and conceptual innovative power (see
section 4), but also promises to be a new computational road into
nonperturbative QFT (section 5) which, picturesquely speaking, enters the
subject on the extreme opposite (noncommutative) side.Comment: This is a updated version which has been submitted to Journal of
Physics A, tcilatex 62 pages. Adress: Institut fuer Theoretische Physik
FU-Berlin, Arnimallee 14, 14195 Berlin presently CBPF, Rua Dr. Xavier Sigaud
150, 22290-180 Rio de Janeiro, Brazi
Radio frequency charge sensing in InAs nanowire double quantum dots
We demonstrate charge sensing of an InAs nanowire double quantum dot (DQD)
coupled to a radio frequency (rf) circuit. We measure the rf signal reflected
by the resonator using homodyne detection. Clear single dot and DQD behavior
are observed in the resonator response. rf-reflectometry allows measurements of
the DQD charge stability diagram in the few-electron regime even when the dc
current through the device is too small to be measured. For a signal-to-noise
ratio of one, we estimate a minimum charge detection time of 350 microseconds
at interdot charge transitions and 9 microseconds for charge transitions with
the leads.Comment: Related papers at http://pettagroup.princeton.ed
Generalized Particle Statistics in Two-Dimensions: Examples from the Theory of Free Massive Dirac Field
In the framework of algebraic quantum field theory we analyze the anomalous
statistics exhibited by a class of automorphisms of the observable algebra of
the two-dimensional free massive Dirac field, constructed by fermionic gauge
group methods. The violation of Haag duality, the topological peculiarity of a
two-dimensional space-time and the fact that unitary implementers do not lie in
the global field algebra account for strange behaviour of statistics, which is
no longer an intrinsic property of sectors. Since automorphisms are not inner,
we exploit asymptotic abelianness of intertwiners in order to construct a
braiding for a suitable -tensor subcategory of End(). We
define two inequivalent classes of path connected bi-asymptopias, selecting
only those sets of nets which yield a true generalized statistics operator.Comment: 24 page
Anomalous Scale Dimensions from Timelike Braiding
Using the previously gained insight about the particle/field relation in
conformal quantum field theories which required interactions to be related to
the existence of particle-like states associated with fields of anomalous
scaling dimensions, we set out to construct a classification theory for the
spectra of anomalous dimensions. Starting from the old observations on
conformal superselection sectors related to the anomalous dimensions via the
phases which appear in the spectral decomposition of the center of the
conformal covering group we explore the possibility
of a timelike braiding structure consistent with the timelike ordering which
refines and explains the central decomposition. We regard this as a preparatory
step in a new construction attempt of interacting conformal quantum field
theories in D=4 spacetime dimensions. Other ideas of constructions based on the
- or the perturbative SYM approach in their relation to the
present idea are briefly mentioned.Comment: completely revised, updated and shortened replacement, 24 pages
tcilatex, 3 latexcad figure
Jorge A. Swieca's contributions to quantum field theory in the 60s and 70s and their relevance in present research
After revisiting some high points of particle physics and QFT of the two
decades from 1960 to 1980, I comment on the work by Jorge Andre Swieca. I
explain how it fits into the quantum field theory during these two decades and
draw attention to its relevance to the ongoing particle physics research. A
particular aim of this article is to direct thr readers mindfulness to the
relevance of what at the time of Swieca was called "the Schwinger Higgs
screening mechanism". which, together with recent ideas which generalize the
concept of gauge theories, has all the ingredients to revolutionize the issue
of gauge theories and the standard model.Comment: 49 pages, expansion and actualization of text, improvement of
formulations and addition of many references to be published in EPJH -
Historical Perspectives on Contemporary Physic
Modular Structure and Duality in Conformal Quantum Field Theory
Making use of a recent result of Borchers, an algebraic version of the
Bisognano-Wichmann theorem is given for conformal quantum field theories, i.e.
the Tomita-Takesaki modular group associated with the von Neumann algebra of a
wedge region and the vacuum vector concides with the evolution given by the
rescaled pure Lorentz transformations preserving the wedge. A similar geometric
description is valid for the algebras associated with double cones. Moreover
essential duality holds on the Minkowski space , and Haag duality for double
cones holds provided the net of local algebras is extended to a pre-cosheaf on
the superworld , i.e. the universal covering of the Dirac-Weyl
compactification of . As a consequence a PCT symmetry exists for any
algebraic conformal field theory in even space-time dimension. Analogous
results hold for a Poincar\'e covariant theory provided the modular groups
corresponding to wedge algebras have the expected geometrical meaning and the
split property is satisfied. In particular the Poincar\'e representation is
unique in this case.Comment: 23 pages, plain TeX, TVM26-12-199
Causality and dispersion relations and the role of the S-matrix in the ongoing research
The adaptation of the Kramers-Kronig dispersion relations to the causal
localization structure of QFT led to an important project in particle physics,
the only one with a successful closure. The same cannot be said about the
subsequent attempts to formulate particle physics as a pure S-matrix project.
The feasibility of a pure S-matrix approach are critically analyzed and their
serious shortcomings are highlighted. Whereas the conceptual/mathematical
demands of renormalized perturbation theory are modest and misunderstandings
could easily be corrected, the correct understanding about the origin of the
crossing property requires the use of the mathematical theory of modular
localization and its relation to the thermal KMS condition. These new concepts,
which combine localization, vacuum polarization and thermal properties under
the roof of modular theory, will be explained and their potential use in a new
constructive (nonperturbative) approach to QFT will be indicated. The S-matrix
still plays a predominant role but, different from Heisenberg's and
Mandelstam's proposals, the new project is not a pure S-matrix approach. The
S-matrix plays a new role as a "relative modular invariant"..Comment: 47 pages expansion of arguments and addition of references,
corrections of misprints and bad formulation
- …
