930 research outputs found
Transformation media that rotate electromagnetic fields
We suggest a way to manipulate electromagnetic wave by introducing a rotation
mapping of coordinates that can be realized by a specific transformation of
permittivity and permeability of a shell surrounding an enclosed domain. Inside
the enclosed domain, the information from outside will appear as if it comes
from a different angle. Numerical simulations were performed to illustrate
these properties.Comment: 5 pages, 3 figure
Calculation of material properties and ray tracing in transformation media
Complex and interesting electromagnetic behavior can be found in spaces with
non-flat topology. When considering the properties of an electromagnetic medium
under an arbitrary coordinate transformation an alternative interpretation
presents itself. The transformed material property tensors may be interpreted
as a different set of material properties in a flat, Cartesian space. We
describe the calculation of these material properties for coordinate
transformations that describe spaces with spherical or cylindrical holes in
them. The resulting material properties can then implement invisibility cloaks
in flat space. We also describe a method for performing geometric ray tracing
in these materials which are both inhomogeneous and anisotropic in their
electric permittivity and magnetic permeability
A gradient index metamaterial
Metamaterials--artificially structured materials with tailored
electromagnetic response--can be designed to have properties difficult to
achieve with existing materials. Here we present a structured metamaterial,
based on conducting split ring resonators (SRRs), which has an effective
index-of-refraction with a constant spatial gradient. We experimentally confirm
the gradient by measuring the deflection of a microwave beam by a planar slab
of the composite metamaterial over a broad range of frequencies. The gradient
index metamaterial represents an alternative approach to the development of
gradient index lenses and similar optics that may be advantageous, especially
at higher frequencies. In particular, the gradient index material we propose
may be suited for terahertz applications, where the magnetic resonant response
of SRRs has recently been demonstrated
Design and analytically full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations
We investigate a general class of electromagnetic devices created with any
continuous transformation functions by rigorously calculating the analytical
expressions of the electromagnetic field in the whole space. Some interesting
phenomena associated with these transformation devices, including the
invisibility cloaks, concentrators, and field rotators, are discussed. By
carefully choosing the transformation function, we can realize cloaks which are
insensitive to perturbations at both the inner and outer boundaries.
Furthermore, we find that when the coating layer of the concentrator is
realized with left-handed materials, energy will circulate between the coating
and the core, and the energy transmits through the core of the concentrator can
be much bigger than that transmits through the concentrator. Therefore, such
concentrator is also a power flux amplifier. Finally, we propose a spherical
field rotator, which functions as not only a wave vector rotator, but also a
polarization rotator, depending on the orientations of the spherical rotator
with respect to the incident wave direction. The functionality of these novel
transformation devices are all successfully confirmed by our analytical full
wave method, which also provides an alternate computational efficient
validation method in contrast to numerical validation methods.Comment: 22 pages, 3 figure
Thin-film microsusceptometer with integrated nanoloop
Trabajo presentado al 14th International Superconductive Electronics Conference (ISEC), celebrado en Cambridge, Massachusetts (EE. UU.) del 7 al 11 de julio de 2013.-- et al.We report the design and performance of thin-film microsusceptometers intended for magnetic measurements on samples at variable temperature down to the low mK range and excitation frequencies of up to about 1 MHz. The devices are realized as first-order gradiometers with two circular loops of 60 μm or 30 μm average diameter resulting in a total inductance of 360 pH or 250 pH, respectively. An integrated excitation coil generates a magnetic field with a sensitivity of 0.1 T/A at the sample position, whereas the Josephson junctions are located in a field-reduced area. The susceptometers are fabricated by a conventional Nb/AlOx/Nb trilayer process. In order to enhance the sensitivity to the level required for the measurement of sub-μm samples, an extra detection loop of about 450 nm inner diameter was integrated into one of the pickup loops by using a focused ion beam (FIB). We show that this device is able of detecting signals from very small permalloy samples. An improved susceptometer design for equipment with integrated nanoloops is also presented, for which a total inductance of 50 pH is predicted.This work was partly funded by the European Microkelvin Collaboration within the 7th Framework Programme of the European Commission (Grant number 228464), by the Spanish Ministry of Economy and Competitiveness (Grant MAT2012-38318-C03), and by the EMRP (EMRP: European Metrology Research Programme) project MetNEMS NEW08. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.Peer reviewe
Transformation Optics for Plasmonics
A new strategy to control the flow of surface plasmon polaritons at metallic
surfaces is presented. It is based on the application of the concept of
Transformation Optics to devise the optical parameters of the dielectric medium
placed on top of the metal surface. We describe the general methodology for the
design of Transformation-Optical devices for surface plasmons and analyze, for
proof-of-principle purposes, three representative examples with different
functionalities: a beam shifter, a cylindrical cloak and a ground-plane cloak.Comment: 15 pages, 3 figure
A nuclear magnetic resonance spectrometer for operation around 1 MHz with a sub 10 mK noise temperature based on a two stage dc SQUID
We have developed a nuclear magnetic resonance spectrometer with a series
tuned input circuit for measurements on samples at millikelvin temperatures
based on an integrated two-stage superconducting quantum interference device
current sensor, with an energy sensitivty e = 26 +/-1 h when operated at 1.4K.
To maximise the sensitivity both the NMR pickup coil and tuning capacitor need
to be cooled, and the tank circuit parameters should be chosen to equalise the
contributions from circulating current noise and voltage noise in the SQUID. A
noise temperature TN = 7 +/-2 mK was measured, at a frequency of 0.884 MHz,
with the circuit parameters close to optimum.Comment: 3 pages, 3 figures. The following article has been submitted to
Applied Physics Letters. After it is published it will be found at
http://apl.aip.org/ Typos corrected, an additional reference include
Molecular interconversion behaviour in comprehensive two-dimensional gas chromatography
Comprehensive two-dimensional gas chromatography (GC x GC) is shown to provide information on dynamic molecular behaviour (interconversion), with the interconversion process occurring on both columns in the coupled-column experiment. The experiment requires suitable adjustment of both experimental conditions and relative dimensions of each of the columns. In this case, a longer column than normally employed in GC x GC allows sufficient retention duration on the second column, which permits the typical plateau-shape recognised for the interconversion process to be observed. The extent of interconversion depends on prevailing temperature, retention time, and the phase type. Polyethylene glycol-based phases were found to result in high interconversion kinetics, although terephthalic acid-terminated polyethylene glycol had a lesser extent of interconversion. Much less interconversion was seen for phenyl-methylpolysiloxane and cyclodextrin phases. This suggests that for the oximes, interconversion largely occurs in the stationary phase. Examples of different extents of interconversion in both dimensions are shown, including peak coalescence on the first column with little interconversion on the second column
Ac magnetic susceptibility of a molecular magnet submonolayer directly patterned onto a microSQUID sensor
We report the controlled integration, via Dip Pen Nanolithography, of
monolayer dots of ferritin-based CoO nanoparticles (12 Bohr magnetons) into the
most sensitive areas of a microSQUID sensor. The nearly optimum flux coupling
between these nanomagnets and the microSQUID improves the achievable
sensitivity by a factor 100, enabling us to measure the linear susceptibility
of the molecular array down to very low temperatures (13 mK). This method opens
the possibility of applying ac susceptibility experiments to characterize
two-dimensional arrays of single molecule magnets within a wide range of
temperatures and frequencies.Comment: 4 pages 3 figure
- …
