7,652 research outputs found

    Witten index, axial anomaly, and Krein's spectral shift function in supersymmetric quantum mechanics

    Get PDF
    A new method is presented to study supersymmetric quantum mechanics. Using relative scattering techniques, basic relations are derived between Krein’s spectral shift function, the Witten index, and the anomaly. The topological invariance of the spectral shift function is discussed. The power of this method is illustrated by treating various models and calculating explicitly the spectral shift function, the Witten index, and the anomaly. In particular, a complete treatment of the two‐dimensional magnetic field problem is given, without assuming that the magnetic flux is quantized

    Electroweak form factors of heavy-light mesons -- a relativistic point-form approach

    Full text link
    We present a general relativistic framework for the calculation of the electroweak structure of heavy-light mesons within constituent-quark models. To this aim the physical processes in which the structure is measured, i.e. electron-meson scattering and semileptonic weak decays, are treated in a Poincar\'e invariant way by making use of the point-form of relativistic quantum mechanics. The electromagnetic and weak meson currents are extracted from the 1-γ\gamma and 1-WW-exchange amplitudes that result from a Bakamjian-Thomas type mass operator for the respective systems. The covariant decomposition of these currents provides the electromagnetic and weak (transition) form factors. Problems with cluster separability, which are inherent in the Bakamjian-Thomas construction, are discussed and it is shown how to keep them under control. It is proved that the heavy-quark limit of the electroweak form factors leads to one universal function, the Isgur-Wise function, confirming that the requirements of heavy-quark symmetry are satisfied. A simple analytical expression is given for the Isgur-Wise function and its agreement with a corresponding front-form calculation is verified numerically. Electromagnetic form factors for BB^- and D+D^+ and weak BD()B\rightarrow D^{(\ast)}-decay form factors are calculated with a simple harmonic-oscilllator wave function and heavy-quark symmetry breaking due to finite masses of the heavy quarks is discussed.Comment: 20 pages, 14 figure

    Effect of a rotating propeller on the separation angle of attack and distortion in ducted propeller inlets

    Get PDF
    The present study represents an extension of an earlier wind tunnel experiment performed with the P&W 17-in. Advanced Ducted Propeller (ADP) Simulator operating at Mach 0.2. In order to study the effects of a rotating propeller on the inlet flow, data were obtained in the UTRC 10- by 15-Foot Large Subsonic Wind Tunnel with the same hardware and instrumentation, but with the propeller removed. These new tests were performed over a range of flow rates which duplicated flow rates in the powered simulator program. The flow through the inlet was provided by a remotely located vacuum source. A comparison of the results of this flow-through study with the previous data from the powered simulator indicated that in the conventional inlet the propeller produced an increase in the separation angle of attack between 4.0 deg at a specific flow of 22.4 lb/sec-sq ft to 2.7 deg at a higher specific flow of 33.8 lb/sec-sq ft. A similar effect on separation angle of attack was obtained by using stationary blockage rather than a propeller

    Universal Control of Nuclear Spins Via Anisotropic Hyperfine Interactions

    Full text link
    We show that nuclear spin subsystems can be completely controlled via microwave irradiation of resolved anisotropic hyperfine interactions with a nearby electron spin. Such indirect addressing of the nuclear spins via coupling to an electron allows us to create nuclear spin gates whose operational time is significantly faster than conventional direct addressing methods. We experimentally demonstrate the feasibility of this method on a solid-state ensemble system consisting of one electron and one nuclear spin.Comment: RevTeX4, 8 pages, 8 figure

    Quenching Spin Decoherence in Diamond through Spin Bath Polarization

    Full text link
    We experimentally demonstrate that the decoherence of a spin by a spin bath can be completely eliminated by fully polarizing the spin bath. We use electron paramagnetic resonance at 240 gigahertz and 8 Tesla to study the spin coherence time T2T_2 of nitrogen-vacancy centers and nitrogen impurities in diamond from room temperature down to 1.3 K. A sharp increase of T2T_2 is observed below the Zeeman energy (11.5 K). The data are well described by a suppression of the flip-flop induced spin bath fluctuations due to thermal spin polarization. T2T_2 saturates at 250μs\sim 250 \mu s below 2 K, where the spin bath polarization is 99.4 %.Comment: 5 pages and 3 figure

    Electromagnetic meson form factor from a relativistic coupled-channel approach

    Full text link
    Point-form relativistic quantum mechanics is used to derive an expression for the electromagnetic form factor of a pseudoscalar meson for space-like momentum transfers. The elastic scattering of an electron by a confined quark-antiquark pair is treated as a relativistic two-channel problem for the qqˉeq\bar{q}e and qqˉeγq\bar{q}e\gamma states. With the approximation that the total velocity of the qqˉeq\bar{q}e system is conserved at (electromagnetic) interaction vertices this simplifies to an eigenvalue problem for a Bakamjian-Thomas type mass operator. After elimination of the qqˉeγq\bar{q}e\gamma channel the electromagnetic meson current and form factor can be directly read off from the one-photon-exchange optical potential. By choosing the invariant mass of the electron-meson system large enough, cluster separability violations become negligible. An equivalence with the usual front-form expression, resulting from a spectator current in the q+=0q^+=0 reference frame, is established. The generalization of this multichannel approach to electroweak form factors for an arbitrary bound few-body system is quite obvious. By an appropriate extension of the Hilbert space this approach is also able to accommodate exchange-current effects.Comment: 30 pages, 5 figure

    T1T_1- and T2T_2-spin relaxation time limitations of phosphorous donor electrons near crystalline silicon to silicon dioxide interface defects

    Full text link
    A study of donor electron spins and spin--dependent electronic transitions involving phosphorous (31^{31}P) atoms in proximity of the (111) oriented crystalline silicon (c-Si) to silicon dioxide (SiO2_{2}) interface is presented for [31^{31}P] = 1015^{15} cm3\mathrm{cm}^{-3} and [31^{31}P] = 1016^{16} cm3\mathrm{cm}^{-3} at about liquid 4^4He temperatures (T=5T = 5 K15\mathrm{K} - 15 K\mathrm{K}). Using pulsed electrically detected magnetic resonance (pEDMR), spin--dependent transitions between the \Phos donor state and two distinguishable interface states are observed, namely (i) \Pb centers which can be identified by their characteristic anisotropy and (ii) a more isotropic center which is attributed to E^\prime defects of the \sio bulk close to the interface. Correlation measurements of the dynamics of spin--dependent recombination confirm that previously proposed transitions between \Phos and the interface defects take place. The influence of these electronic near--interface transitions on the \Phos donor spin coherence time T2T_2 as well as the donor spin--lattice relaxation time T1T_1 is then investigated by comparison of spin Hahn--echo decay measurements obtained from conventional bulk sensitive pulsed electron paramagnetic resonance and surface sensitive pEDMR, as well as surface sensitive electrically detected inversion recovery experiments. The measurements reveal that both T2T_2 and T1T_1 of \Phos donor electrons spins in proximity of energetically lower interface states at T13T\leq 13 K are reduced by several orders of magnitude

    Switched Control of Electron Nuclear Spin Systems

    Full text link
    In this article, we study control of electron-nuclear spin dynamics at magnetic field strengths where the Larmor frequency of the nucleus is comparable to the hyperfine coupling strength. The quantization axis for the nuclear spin differs from the static B_0 field direction and depends on the state of the electron spin. The quantization axis can be switched by flipping the state of electron spin, allowing for universal control on nuclear spin states. We show that by performing a sequence of flips (each followed by a suitable delay), we can perform any desired rotation on the nuclear spins, which can also be conditioned on the state of the electron spin. These operations, combined with electron spin rotations can be used to synthesize any unitary transformation on the coupled electron-nuclear spin system. We discuss how these methods can be used for design of experiments for transfer of polarization from the electron to the nuclear spins

    Critical connectedness of thin arithmetical discrete planes

    Full text link
    An arithmetical discrete plane is said to have critical connecting thickness if its thickness is equal to the infimum of the set of values that preserve its 22-connectedness. This infimum thickness can be computed thanks to the fully subtractive algorithm. This multidimensional continued fraction algorithm consists, in its linear form, in subtracting the smallest entry to the other ones. We provide a characterization of the discrete planes with critical thickness that have zero intercept and that are 22-connected. Our tools rely on the notion of dual substitution which is a geometric version of the usual notion of substitution acting on words. We associate with the fully subtractive algorithm a set of substitutions whose incidence matrix is provided by the matrices of the algorithm, and prove that their geometric counterparts generate arithmetic discrete planes.Comment: 18 pages, v2 includes several corrections and is a long version of the DGCI extended abstrac
    corecore