1,688 research outputs found
Grover's search algorithm: An optical approach
The essential operations of a quantum computer can be accomplished using
solely optical elements, with different polarization or spatial modes
representing the individual qubits. We present a simple all-optical
implementation of Grover's algorithm for efficient searching, in which a
database of four elements is searched with a single query. By `compiling' the
actual setup, we have reduced the required number of optical elements from 24
to only 12. We discuss the extension to larger databases, and the limitations
of these techniques.Comment: 6 pages, 5 figures. To appear in a special issue of the Journal of
Modern Optics -- "The Physics of Quantum Information
Lifespan map creation enhances stream restoration design.
Research and engineering efforts are establishing a vast number of stream restoration planning approaches, design testing frameworks, construction techniques, and performance evaluation methods. A primary question arises as to the lifespan of stream restoration features. This study develops a framework to identify relevant parameters, design criteria and survival thresholds for ten multidisciplinary restoration techniques: •Parameterize relevant features, notably, (1) bar and floodplain grading; (2) berm setback; (3) vegetation plantings; (4) riprap placement; (5) sediment replenishment; (6) side cavities; (7) side channel and anabranches; (8) streambed reshaping; (9) structure removal; and (10) placement of wood in the shape of engineered logjams and rootstocks.•Identify survival thresholds for parameters, where the feature life ends when the threshold value is exceeded.•Compare parameter thresholds with spatial data of topographic change and hydrodynamic forces as a result of hydrodynamic modelling of multiple discharges. The discharge or topographic change rate that is related to the lowest (flood) return period spatially determines the feature's lifespan in years
Measuring a photonic qubit without destroying it
Measuring the polarisation of a single photon typically results in its
destruction. We propose, demonstrate, and completely characterise a
\emph{quantum non-demolition} (QND) scheme for realising such a measurement
non-destructively. This scheme uses only linear optics and photo-detection of
ancillary modes to induce a strong non-linearity at the single photon level,
non-deterministically. We vary this QND measurement continuously into the weak
regime, and use it to perform a non-destructive test of complementarity in
quantum mechanics. Our scheme realises the most advanced general measurement of
a qubit: it is non-destructive, can be made in any basis, and with arbitrary
strength.Comment: 4 pages, 3 figure
Recommended from our members
Magnetic Switch for Integrated Atom Optics
A magnetic waveguide structure allows switching of neutral atoms between two guides. The switch consists of lithographically patterned current-carrying wires on a sapphire substrate. By selectively sending current through a particular set of wires, we select the desired output port of an incoming beam. We utilize two different magnetic-guiding schemes to adiabatically manipulate the atom trajectory
A waveguide atom beamsplitter for laser-cooled neutral atoms
A laser-cooled neutral-atom beam from a low-velocity intense source is split
into two beams while guided by a magnetic-field potential. We generate our
multimode-beamsplitter potential with two current-carrying wires on a glass
substrate combined with an external transverse bias field. The atoms bend
around several curves over a -cm distance. A maximum integrated flux of
is achieved with a current density of
in the 100- diameter
wires. The initial beam can be split into two beams with a 50/50 splitting
ratio
Guiding neutral atoms around curves with lithographically patterned current-carrying wires
Laser-cooled neutral atoms from a low-velocity atomic source are guided via a
magnetic field generated between two parallel wires on a glass substrate. The
atoms bend around three curves, each with a 15-cm radius of curvature, while
traveling along a 10-cm-long track. A maximum flux of 2*10^6 atoms/sec is
achieved with a current density of 3*10^4 A/cm^2 in the
100x100-micrometer-cross-section wires. The kinetic energy of the guided atoms
in one transverse dimension is measured to be 42 microKelvin.Comment: 9 page
A Minimal Length from the Cutoff Modes in Asymptotically Safe Quantum Gravity
Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum
4-sphere is discussed as a specific example of a fractal spacetime manifold.
The relation between the infrared cutoff built into the effective average
action and the corresponding coarse graining scale is investigated. Analyzing
the properties of the pertinent cutoff modes, the possibility that QEG
generates a minimal length scale dynamically is explored. While there exists no
minimal proper length, the QEG sphere appears to be "fuzzy" in the sense that
there is a minimal angular separation below which two points cannot be resolved
by the cutoff modes.Comment: 26 pages, 1 figur
On the unique possibility to increase significantly the contrast of dark resonances on D1 line of Rb
We propose and study, theoretically and experimentally, a new scheme of
excitation of a coherent population trapping resonance for D1 line of alakli
atoms with nuclear spin by bichromatic linearly polarized light ({\em
lin}{\em lin} field) at the conditions of spectral resolution of the
excited state. The unique properties of this scheme result in a high contrast
of dark resonance for D1 line of Rb.Comment: 9 pages, 7 figures. This material has been partially presented on
ICONO-2005, 14 May 2005, St. Petersburg, Russia. v2 references added; text is
changed a bi
- …
