12 research outputs found

    Explicit Stabilised Gradient Descent for Faster Strongly Convex Optimisation

    Get PDF
    This paper introduces the Runge-Kutta Chebyshev descent method (RKCD) for strongly convex optimisation problems. This new algorithm is based on explicit stabilised integrators for stiff differential equations, a powerful class of numerical schemes that avoid the severe step size restriction faced by standard explicit integrators. For optimising quadratic and strongly convex functions, this paper proves that RKCD nearly achieves the optimal convergence rate of the conjugate gradient algorithm, and the suboptimality of RKCD diminishes as the condition number of the quadratic function worsens. It is established that this optimal rate is obtained also for a partitioned variant of RKCD applied to perturbations of quadratic functions. In addition, numerical experiments on general strongly convex problems show that RKCD outperforms Nesterov's accelerated gradient descent

    Accélération Non-linéaire des Réseaux de Neurones Profonds

    Get PDF
    Regularized nonlinear acceleration (RNA) is a generic extrapolation scheme for optimization methods, with marginal computational overhead. It aims to improve convergence using only the iterates of simple iterative algorithms. However, so far its application to optimization was theoretically limited to gradient descent and other single-step algorithms. Here, we adapt RNA to a much broader setting including stochastic gradient with momentum and Nesterov's fast gradient. We use it to train deep neural networks, and empirically observe that extrapolated networks are more accurate, especially in the early iterations. A straightforward application of our algorithm when training ResNet-152 on ImageNet produces a top-1 test error of 20.88%, improving by 0.8% the reference classification pipeline. Furthermore, the code runs offline in this case, so it never negatively affects performance
    corecore