722 research outputs found
Constrained probability distributions of correlation functions
Context: Two-point correlation functions are used throughout cosmology as a
measure for the statistics of random fields. When used in Bayesian parameter
estimation, their likelihood function is usually replaced by a Gaussian
approximation. However, this has been shown to be insufficient.
Aims: For the case of Gaussian random fields, we search for an exact
probability distribution of correlation functions, which could improve the
accuracy of future data analyses.
Methods: We use a fully analytic approach, first expanding the random field
in its Fourier modes, and then calculating the characteristic function.
Finally, we derive the probability distribution function using integration by
residues. We use a numerical implementation of the full analytic formula to
discuss the behaviour of this function.
Results: We derive the univariate and bivariate probability distribution
function of the correlation functions of a Gaussian random field, and outline
how higher joint distributions could be calculated. We give the results in the
form of mode expansions, but in one special case we also find a closed-form
expression. We calculate the moments of the distribution and, in the univariate
case, we discuss the Edgeworth expansion approximation. We also comment on the
difficulties in a fast and exact numerical implementation of our results, and
on possible future applications.Comment: 13 pages, 5 figures, updated to match version published in A&A
(slightly expanded Sects. 5.3 and 6
Power Spectra in Global Defect Theories of Cosmic Structure Formation
An efficient technique for computing perturbation power spectra in field
ordering theories of cosmic structure formation is introduced, enabling
computations to be carried out with unprecedented precision. Large scale
simulations are used to measure unequal time correlators of the source stress
energy, taking advantage of scaling during matter and radiation domination, and
causality, to make optimal use of the available dynamic range. The correlators
are then re-expressed in terms of a sum of eigenvector products, a
representation which we argue is optimal, enabling the computation of the final
power spectra to be performed at high accuracy. Microwave anisotropy and matter
perturbation power spectra for global strings, monopoles, textures and
non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure
Polarization of the Microwave Background in Defect Models
We compute the polarization power spectra for global strings, monopoles,
textures and nontopological textures, and compare them to inflationary models.
We find that topological defect models predict a significant (1 microK)
contribution to magnetic type polarization on degree angular scales, which is
produced by the large vector component of the defect source. We also
investigate the effect of decoherence on polarization. It leads to a smoothing
of acoustic oscillations both in temperature and polarization power spectra and
strongly suppresses the cross-correlation between temperature and polarization
relative to inflationary models. Presence or absence of magnetic polarization
or cross-correlation would be a strong discriminator between the two theories
of structure formation and will be testable with the next generation of CMB
satellites.Comment: 4 pages, 3 figures, RevTeX fil
Standard and non-standard primordial neutrinos
The standard cosmological model predicts the existence of a cosmic neutrino
background with a present density of about 110 cm^{-3} per flavour, which
affects big-bang nucleosynthesis, cosmic microwave background anisotropies, and
the evolution of large scale structures. We report on a precision calculation
of the cosmic neutrino background properties including the modification
introduced by neutrino oscillations. The role of a possible
neutrino-antineutrino asymmetry and the impact of non-standard
neutrino-electron interactions on the relic neutrinos are also briefly
discussed.Comment: 4 pages, no figures. Contribution to the proceedings of SNOW 2006,
Stockholm, May 2-6, 2006. Typos corrected, updated reference
Direct Signature of Evolving Gravitational Potential from Cosmic Microwave Background
We show that time dependent gravitational potential can be directly detected
from the cosmic microwave background (CMB) anisotropies. The signature can be
measured by cross-correlating the CMB with the projected density field
reconstructed from the weak lensing distortions of the CMB itself. The
cross-correlation gives a signal whenever there is a time dependent
gravitational potential. This method traces dark matter directly and has a well
defined redshift distribution of the window projecting over the density
perturbations, thereby avoiding the problems plaguing other proposed
cross-correlations. We show that both MAP and Planck will be able to probe this
effect for observationally relevant curvature and cosmological constant models,
which will provide additional constraints on the cosmological parameters.Comment: 4 pages, 2 figures. Submitted to PR
Lensing of the CMB: Non Gaussian aspects
We study the generation of CMB anisotropies by gravitational lensing on small
angular scales. We show these fluctuations are not Gaussian. We prove that the
power spectrum of the tail of the CMB anisotropies on small angular scales
directly gives the power spectrum of the deflection angle. We show that the
generated power on small scales is correlated with the large scale gradient.
The cross correlation between large scale gradient and small scale power can be
used to test the hypothesis that the extra power is indeed generated by
lensing. We compute the three and four point function of the temperature in the
small angle limit. We relate the non-Gaussian aspects presented in this paper
as well as those in our previous studies of the lensing effects on large scales
to the three and four point functions. We interpret the statistics proposed in
terms of different configurations of the four point function and show how they
relate to the statistic that maximizes the S/N.Comment: Changes to match accepted version in PRD, 20 pages 10 figures. Better
resolution images of the figures can be found at
http://www.sns.ias.edu/~matiasz/RESEARCH/cmblensing.htm
Detecting the Earliest Galaxies Through Two New Sources of 21cm Fluctuations
The first galaxies that formed at a redshift ~20-30 emitted continuum photons
with energies between the Lyman-alpha and Lyman limit wavelengths of hydrogen,
to which the neutral universe was transparent except at the Lyman-series
resonances. As these photons redshifted or scattered into the Lyman-alpha
resonance they coupled the spin temperature of the 21cm transition of hydrogen
to the gas temperature, allowing it to deviate from the microwave background
temperature. We show that the fluctuations in the radiation emitted by the
first galaxies produced strong fluctuations in the 21cm flux before the
Lyman-alpha coupling became saturated. The fluctuations were caused by biased
inhomogeneities in the density of galaxies, along with Poisson fluctuations in
the number of galaxies. Observing the power-spectra of these two sources would
probe the number density of the earliest galaxies and the typical mass of their
host dark matter halos. The enhanced amplitude of the 21cm fluctuations from
the era of Lyman-alpha coupling improves considerably the practical prospects
for their detection.Comment: 11 pages, 7 figures, ApJ, published. Normalization fixed in top
panels of Figures 4-
Weak Lensing of the CMB: A Harmonic Approach
Weak lensing of CMB anisotropies and polarization for the power spectra and
higher order statistics can be handled directly in harmonic-space without
recourse to real-space correlation functions. For the power spectra, this
approach not only simplifies the calculations but is also readily generalized
from the usual flat-sky approximation to the exact all-sky form by replacing
Fourier harmonics with spherical harmonics. Counterintuitively, due to the
nonlinear nature of the effect, errors in the flat-sky approximation do not
improve on smaller scales. They remain at the 10% level through the acoustic
regime and are sufficiently large to merit adoption of the all-sky formalism.
For the bispectra, a cosmic variance limited detection of the correlation with
secondary anisotropies has an order of magnitude greater signal-to-noise for
combinations involving magnetic parity polarization than those involving the
temperature alone. Detection of these bispectra will however be severely noise
and foreground limited even with the Planck satellite, leaving room for
improvement with higher sensitivity experiments. We also provide a general
study of the correspondence between flat and all sky potentials, deflection
angles, convergence and shear for the power spectra and bispectra.Comment: 17 pages, 5 figures, submitted to PR
Evidence for Quadratic Tidal Tensor Bias from the Halo Bispectrum
The relation between the clustering properties of luminous matter in the form
of galaxies and the underlying dark matter distribution is of fundamental
importance for the interpretation of ongoing and upcoming galaxy surveys. The
so called local bias model, where galaxy density is a function of local matter
density, is frequently discussed as a means to infer the matter power spectrum
or correlation function from the measured galaxy correlation. However,
gravitational evolution generates a term quadratic in the tidal tensor and thus
non-local in the density field, even if this term is absent in the initial
conditions (Lagrangian space). Because the term is quadratic, it contributes as
a loop correction to the power spectrum, so the standard linear bias picture
still applies on large scales, however, it contributes at leading order to the
bispectrum for which it is significant on all scales. Such a term could also be
present in Lagrangian space if halo formation were influenced by the tidal
field. We measure the corresponding coupling strengths from the
matter-matter-halo bispectrum in numerical simulations and find a non-vanishing
coefficient for the tidal tensor term. We find no scale dependence of the bias
parameters up to k=0.1 h/Mpc and that the tidal effect is increasing with halo
mass. While the Lagrangian bias picture is a better description of our results
than the Eulerian bias picture, our results suggest that there might be a tidal
tensor bias already in the initial conditions. We also find that the
coefficients of the quadratic density term deviate quite strongly from the
theoretical predictions based on the spherical collapse model and a universal
mass function. Both quadratic density and tidal tensor bias terms must be
included in the modeling of galaxy clustering of current and future surveys if
one wants to achieve the high precision cosmology promise of these datasets.Comment: 14 pages, 4 figures, 1 tabl
- …
