42 research outputs found

    Validation of an Immunoassay for anti-thymidine phosphorylase antibodies in patients with MNGIE treated with enzyme replacement therapy

    Get PDF
    Erythrocyte encapsulated thymidine phosphorylase is recombinant Escherichia coli thymidine phosphorylase encapsulated within human autologous erythrocytes and is under development as an enzyme replacement therapy for the ultra-rare inherited metabolic disorder mitochondrial neurogastrointestinal encephalomyopathy. This study describes the method validation of a two-step bridging electrochemiluminescence immunoassay for the detection of anti-thymidine phosphorylase antibodies in human serum according to current industry practice and regulatory guidelines. The analytical method was assessed for screening cut point, specificity, selectivity, precision, prozone effect, drug tolerance, and stability. Key findings were a correction factor of 129 relative light units for the cut-point determination; a specificity cut point of 93% inhibition; confirmed intra-assay and inter-assay precision; assay sensitivity of 356 ng/mL; no matrix or prozone effects up to 25,900 ng/mL; a drug tolerance of 156 ng/mL; and stability at room temperature for 24 hr and up to five freeze-thaws. Immunogenicity evaluations of serum from three patients who received erythrocyte encapsulated thymidine phosphorylase under a compassionate treatment program showed specific anti-thymidine phosphorylase antibodies in one patient. To conclude, a sensitive, specific, and selective immunoassay has been validated for the measurement of anti-thymidine phosphorylase antibodies; this will be utilized in a phase II pivotal clinical trial of erythrocyte encapsulated thymidine phosphorylase

    Erythrocyte Encapsulated Thymidine Phosphorylase for the Treatment of Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy: Study Protocol for a Multi-Centre, Multiple Dose, Open Label Trial

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder which primarily affects the gastrointestinal and nervous systems. This disease is caused by mutations in the nuclear TYMP gene, which encodes for thymidine phosphorylase, an enzyme required for the normal metabolism of deoxynucleosides, thymidine, and deoxyuridine. The subsequent elevated systemic concentrations of deoxynucleosides lead to increased intracellular concentrations of their corresponding triphosphates, and ultimately mitochondrial failure due to progressive accumulation of mitochondrial DNA (mtDNA) defects and mtDNA depletion. Currently, there are no treatments for MNGIE where effectiveness has been evidenced in clinical trials. This Phase 2, multi-centre, multiple dose, open label trial without a control will investigate the application of erythrocyte-encapsulated thymidine phosphorylase (EE-TP) as an enzyme replacement therapy for MNGIE. Three EE-TP dose levels are planned with patients receiving the dose level that achieves metabolic correction. The study duration is 31 months, comprising 28 days of screening, 90 days of run-in, 24 months of treatment and 90 days of post-dose follow-up. The primary objectives are to determine the safety, tolerability, pharmacodynamics, and efficacy of multiple doses of EE-TP. The secondary objectives are to assess EE-TP immunogenicity after multiple dose administrations and changes in clinical assessments, and the pharmacodynamics effect of EE-TP on clinical assessments

    Cloning and sequencing of a molluscan endo-beta-1,4-glucanase gene from the blue mussel, Mytilus edulis

    No full text
    Using polymerase chain reaction, cloning and sequencing techniques, a complementary DNA encoding a low molecular mass cellulase (endo-1,4-beta -n-glucanase, EC 3.2.1.4) has been identified in the digestive gland of the marine mussel, Mytilus edulis, It co</p

    No full text
    corecore