847 research outputs found

    The COP9 SIGNALOSOME is required for postembryonic meristem maintenance in Arabidopsis thaliana

    Get PDF
    Cullin-RING E3 ligases (CRLs) regulate different aspects of plant development, and are activated by modification of their cullin subunit with the ubiquitin-like protein NEDD8 (NEural precursor cell expressed Developmentally Down-regulated 8) (neddylation) and deactivated by NEDD8 removal (deneddylation). The CONSTITUTIVELY PHOTOMORPHOGENIC9 (COP9) signalosome (CSN) acts as a molecular switch of CRLs activity by reverting their neddylation status, but its contribution to embryonic and early seedling development remains poorly characterized. Here, we analyzed the phenotypic defects of csn mutants and monitored the cullin deneddylation/neddylation ratio during embryonic and early seedling development. We show that while csn mutants can complete embryogenesis (albeit at a slower pace than wild type) and are able to germinate (albeit at a reduced rate), they progressively loose meristem activity upon germination, until they become unable to sustain growth. We also show that the majority of cullin proteins is progressively neddylated during the late stages of seed maturation and becomes deneddylated upon seed germination. This developmentally regulated shift in the cullin neddylation status is absent in csn mutants. We conclude that the CSN and its cullin deneddylation activity are required to sustain postembryonic meristem function in Arabidopsis

    Swift/BAT and MAXI/GSC Broadband Transient Monitor

    Full text link
    We present the newly developed broadband transient monitor using the Swift Burst Alert Telescope (BAT) and the MAXI Gas Slit Camera (GSC) data. Our broadband transient monitor monitors high energy transient sources from 2 keV to 200 keV in seven energy bands by combining the BAT (15-200 keV) and the GSC (2-20 keV) data. Currently, the daily and the 90-minute (one orbit) averaged light curves are available for 106 high energy transient sources. Our broadband transient monitor is available to the public through our web server, http://yoshidalab.mydns.jp/bat_gsc_trans_mon/, for a wider use by the community. We discuss the daily sensitivity of our monitor and possible future improvements to our pipeline.Comment: 19 pages, 8 figures, accepted for publication in PAS

    X-ray Reflection and An Exceptionally Long Thermonuclear Helium Burst from IGR J17062-6143

    Get PDF
    Thermonuclear X-ray bursts from accreting neutron stars power brief but strong irradiation of their surroundings, providing a unique way to study accretion physics. We analyze MAXI/Gas Slit Camera and Swift/XRT spectra of a day-long flash observed from IGR J17062-6143 in 2015. It is a rare case of recurring bursts at a low accretion luminosity of 0.15% Eddington. Spectra from MAXI, Chandra, and NuSTAR observations taken between the 2015 burst and the previous one in 2012 are used to determine the accretion column. We find it to be consistent with the burst ignition column of 5 × 10^(10) g cm^(−2), which indicates that it is likely powered by burning in a deep helium layer. The burst flux is observed for over a day, and decays as a straight power law: F ∝ t^(-1.15). The burst and persistent spectra are well described by thermal emission from the neutron star, Comptonization of this emission in a hot optically thin medium surrounding the star, and reflection off the photoionized accretion disk. At the burst peak, the Comptonized component disappears, when the burst may dissipate the Comptonizing gas, and it returns in the burst tail. The reflection signal suggests that the inner disk is truncated at ~102 gravitational radii before the burst, but may move closer to the star during the burst. At the end of the burst, the flux drops below the burst cooling trend for 2 days, before returning to the pre-burst level

    Probing X-ray burst -- accretion disk interaction in low mass X-ray binaries through kilohertz quasiperiodic oscillations

    Full text link
    The intense radiation flux of Type I X-ray bursts is expected to interact with the accretion flow around neutron stars. High frequency quasiperiodic oscillations (kHz QPOs), observed at frequencies matching orbital frequencies at tens of gravitational radii, offer a unique probe of the innermost disk regions. In this paper, we follow the lower kHz QPOs, in response to Type I X-ray bursts, in two prototypical QPO sources, namely 4U 1636-536 and 4U 1608-522, as observed by the Proportional Counter Array of the Rossi X-ray Timing Explorer. We have selected a sample of 15 bursts for which the kHz QPO frequency can be tracked on timescales commensurable with the burst durations (tens of seconds). We find evidence that the QPOs are affected for over ~200 s during one exceptionally long burst and ~100 s during two others (although at a less significant level), while the burst emission has already decayed to a level that would enable the pre-burst QPO to be detected. On the other hand, for most of our burst-kHz QPO sample, we show that the QPO is detected as soon as the statistics allow and in the best cases, we are able to set an upper limit of ~20 s on the recovery time of the QPO. This diversity of behavior cannot be related to differences in burst peak luminosity. We discuss these results in the framework of recent findings that accretion onto the neutron star may be enhanced during Type I X-ray bursts. The subsequent disk depletion could explain the disappearance of the QPO for ~100 s, as possibly observed in two events. However, alternative scenarios would have to be invoked for explaining the short recovery timescales inferred from most bursts. Clearly the combination of fast timing and spectral information of Type I X-ray bursts holds great potential in the study of the dynamics of the inner accretion flow around neutron stars.Comment: 8 pages, 9 figures, appears in Astronomy & Astrophysics, Volume 567, id.A80, published 07/201

    A damage model based on failure threshold weakening

    Full text link
    A variety of studies have modeled the physics of material deformation and damage as examples of generalized phase transitions, involving either critical phenomena or spinodal nucleation. Here we study a model for frictional sliding with long range interactions and recurrent damage that is parameterized by a process of damage and partial healing during sliding. We introduce a failure threshold weakening parameter into the cellular-automaton slider-block model which allows blocks to fail at a reduced failure threshold for all subsequent failures during an event. We show that a critical point is reached beyond which the probability of a system-wide event scales with this weakening parameter. We provide a mapping to the percolation transition, and show that the values of the scaling exponents approach the values for mean-field percolation (spinodal nucleation) as lattice size LL is increased for fixed RR. We also examine the effect of the weakening parameter on the frequency-magnitude scaling relationship and the ergodic behavior of the model

    Graviton Vertices and the Mapping of Anomalous Correlators to Momentum Space for a General Conformal Field Theory

    Full text link
    We investigate the mapping of conformal correlators and of their anomalies from configuration to momentum space for general dimensions, focusing on the anomalous correlators TOOTOO, TVVTVV - involving the energy-momentum tensor (T)(T) with a vector (V)(V) or a scalar operator (OO) - and the 3-graviton vertex TTTTTT. We compute the TOOTOO, TVVTVV and TTTTTT one-loop vertex functions in dimensional regularization for free field theories involving conformal scalar, fermion and vector fields. Since there are only one or two independent tensor structures solving all the conformal Ward identities for the TOOTOO or TVVTVV vertex functions respectively, and three independent tensor structures for the TTTTTT vertex, and the coefficients of these tensors are known for free fields, it is possible to identify the corresponding tensors in momentum space from the computation of the correlators for free fields. This works in general dd dimensions for TOOTOO and TVVTVV correlators, but only in 4 dimensions for TTTTTT, since vector fields are conformal only in d=4d=4. In this way the general solution of the Ward identities including anomalous ones for these correlators in (Euclidean) position space, found by Osborn and Petkou is mapped to the ordinary diagrammatic one in momentum space. We give simplified expressions of all these correlators in configuration space which are explicitly Fourier integrable and provide a diagrammatic interpretation of all the contact terms arising when two or more of the points coincide. We discuss how the anomalies arise in each approach [...]Comment: 57 pages, 7 figures. Refs adde

    Comments on Anomaly Cancellations by Pole Subtractions and Ghost Instabilities with Gravity

    Full text link
    We investigate some aspects of anomaly cancellation realized by the subtraction of an anomaly pole, stressing on some of its properties in superspace. In a local formulation these subtractions can be described in terms of a physical scalar, an axion and related ghosts. They appear to be necessary for the unitarization of the theory in the ultraviolet, but they may generate an infrared instability of the corresponding effective action, signalled by ghost condensation. In particular the subtraction of the superanomaly multiplet by a pole in superspace is of dubious significance, due to the different nature of the chiral and conformal anomalies. In turn, this may set more stringent constraints on the coupling of supersymmetric theories to gravity.Comment: 18 pages. Revised version. To appear in "Classical and Quantum Gravity

    The LOFT perspective on neutron star thermonuclear bursts

    Get PDF
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of thermonuclear X-ray bursts on accreting neutron stars. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timin
    corecore