3,541 research outputs found
Computational screening of magnetocaloric alloys
An exciting development over the past few decades has been the use of
high-throughput computational screening as a means of identifying promising
candidate materials for a variety of structural or functional properties.
Experimentally, it is often found that the highest-performing materials contain
substantial atomic site disorder. These are frequently overlooked in
high-throughput computational searches however, due to difficulties in dealing
with materials that do not possess simple, well-defined crystallographic unit
cells. Here we demonstrate that the screening of magnetocaloric materials with
the help of the density functional theory-based magnetic deformation proxy can
be extended to systems with atomic site disorder. This is accomplished by
thermodynamic averaging of the magnetic deformation for ordered supercells
across a solid solution. We show that the highly non-monotonic magnetocaloric
properties of the disordered solid solutions Mn(CoFe)Ge and
(MnNi)CoGe are successfully captured using this method.Comment: Main text: 8 pages, 6 figures. Supplemental Material: 2 pages, 2
figure
A Value-Based Approach for Sustainable Supplier-Customer Relationships: The Case of the Indian Steel Industry
The steel industry, which has endured years of mediocre performance due to a supply glut and consequent depressed world prices, has seen considerable resurgence during the last several months. The ever-widening demand-supply gap, and greatly increased input costs have resulted in prices firming up. The sharp increase in steel prices without any let-up is an issue that steel customers have found difficult to grapple with. Many customers believe that the steel industry is behaving opportunistically. The paper attempts to understand the dynamics of the Indian steel industry. Although the steel industry caters to both consumer (B2C) and business (B2B) markets, the focus of the paper is on the business markets, which accounts for 80% of the market. After presenting a picture of who the suppliers and customers of the steel industry are, the paper presents the various forces at play in the industry, a conceptual model to understand supplier-customer relationships in the industry, and traces the sources of animosity and hostility between the supplier and the customer firms. Forging meaningful value-based long-term relationships between supplier and customer firms as a way forward is explored. The paper presents possible remedies to the malady of distrust between customer and supplier firms. Collaborative working between competing suppliers and active pan-industry collaborative forums to bring better cooperation and trust between customer and supplier firms are essential first steps to bring normalcy back into the industry’s functioning.
Structural coupling and magnetic tuning in Mn2–x CoxP magnetocalorics for thermomagnetic power generation
A functorial construction of moduli of sheaves
We show how natural functors from the category of coherent sheaves on a
projective scheme to categories of Kronecker modules can be used to construct
moduli spaces of semistable sheaves. This construction simplifies or clarifies
technical aspects of existing constructions and yields new simpler definitions
of theta functions, about which more complete results can be proved.Comment: 52 pp. Dedicated to the memory of Joseph Le Potier. To appear in
Inventiones Mathematicae. Slight change in the definition of the Kronecker
algebra in Secs 1 (p3) and 2.2 (p6), with corresponding small alterations
elsewhere, to make the constructions work for non-reduced schemes. Section
6.5 rewritten. Remark 2.6 and new references adde
Feedback Communication Systems with Limitations on Incremental Redundancy
This paper explores feedback systems using incremental redundancy (IR) with
noiseless transmitter confirmation (NTC). For IR-NTC systems based on {\em
finite-length} codes (with blocklength ) and decoding attempts only at {\em
certain specified decoding times}, this paper presents the asymptotic expansion
achieved by random coding, provides rate-compatible sphere-packing (RCSP)
performance approximations, and presents simulation results of tail-biting
convolutional codes.
The information-theoretic analysis shows that values of relatively close
to the expected latency yield the same random-coding achievability expansion as
with . However, the penalty introduced in the expansion by limiting
decoding times is linear in the interval between decoding times. For binary
symmetric channels, the RCSP approximation provides an efficiently-computed
approximation of performance that shows excellent agreement with a family of
rate-compatible, tail-biting convolutional codes in the short-latency regime.
For the additive white Gaussian noise channel, bounded-distance decoding
simplifies the computation of the marginal RCSP approximation and produces
similar results as analysis based on maximum-likelihood decoding for latencies
greater than 200. The efficiency of the marginal RCSP approximation facilitates
optimization of the lengths of incremental transmissions when the number of
incremental transmissions is constrained to be small or the length of the
incremental transmissions is constrained to be uniform after the first
transmission. Finally, an RCSP-based decoding error trajectory is introduced
that provides target error rates for the design of rate-compatible code
families for use in feedback communication systems.Comment: 23 pages, 15 figure
Superfluid-Insulator transition of ultracold atoms in an optical lattice in the presence of a synthetic magnetic field
We study the Mott insulator-superfluid transition of ultracold bosonic atoms
in a two-dimensional square optical lattice in the presence of a synthetic
magnetic field with p/q (p and q being co-prime integers) flux quanta passing
through each lattice plaquette. We show that on approach to the transition from
the Mott side, the momentum distribution of the bosons exhibits q precursor
peaks within the first magnetic Brillouin zone. We also provide an effective
theory for the transition and show that it involves q interacting boson fields.
We construct, from a mean-field analysis of this effective theory, the
superfluid ground states near the transition and compute, for q=2,3, both the
gapped and the gapless collective modes of these states. We suggest experiments
to test our theory.Comment: 4 pages, 4 figs; v
Exchange biasing of single-domain Ni nanoparticles spontaneously grown in an antiferromagnetic MnO matrix
Exchange biased composites of ferromagnetic single-domain Ni nanoparticles
embedded within large grains of MnO have been prepared by reduction of
NiMnO phases in flowing hydrogen. The Ni precipitates are 15-30
nm in extent, and the majority are completely encased within the MnO matrix.
The manner in which the Ni nanoparticles are spontaneously formed imparts a
high ferromagnetic- antiferromagnetic interface/volume ratio, which results in
substantial exchange bias effects. Exchange bias fields of up to 100 Oe are
observed, in cases where the starting Ni content in the precursor
NiMnO phase is small. For particles of approximately the same
size, the exchange bias leads to significant hardening of the magnetization,
with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure
Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7
Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a
combination of structural, magnetic, and electrical and thermal transport
studies. Analysis of synchrotron X-ray and neutron diffraction patterns
suggests some site disorder on the A-site in the pyrochlore sublattice: Ru
substitutes on the Nd-site up to 7.0(3)%, regardless of the different
preparative conditions explored. Intrinsic magnetic and electrical transport
properties have been measured. Ru 4d spins order antiferromagnetically at 143 K
as seen both in susceptibility and specific heat, and there is a corresponding
change in the electrical resistivity behaviour. A second antiferromagnetic
ordering transition seen below 10 K is attributed to ordering of Nd 4f spins.
Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be
independent of the Ru-antisite disorder on the Nd site. The electrical
properties of Nd2Ru2O7 are presented in the light of data published on all
A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi3+
ions on the A-site play in driving metallic behaviour. High-temperature
thermoelectric properties have also been measured. When considered in the
context of known thermoelectric materials with useful figures-of-merit, it is
clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents
it from being an effective thermoelectric. A method for screening candidate
thermoelectrics is suggested.Comment: 19 pages, 10 figure
- …
