687 research outputs found

    Intermittent dislocation flow in viscoplastic deformation

    Full text link
    The viscoplastic deformation (creep) of crystalline materials under constant stress involves the motion of a large number of interacting dislocations. Analytical methods and sophisticated `dislocation-dynamics' simulations have proved very effective in the study of dislocation patterning, and have led to macroscopic constitutive laws of plastic deformation. Yet, a statistical analysis of the dynamics of an assembly of interacting dislocations has not hitherto been performed. Here we report acoustic emission measurements on stressed ice single crystals, the results of which indicate that dislocations move in a scale-free intermittent fashion. This result is confirmed by numerical simulations of a model of interacting dislocations that successfully reproduces the main features of the experiment. We find that dislocations generate a slowly evolving configuration landscape which coexists with rapid collective rearrangements. These rearrangements involve a comparatively small fraction of the dislocations and lead to an intermittent behavior of the net plastic response. This basic dynamical picture appears to be a generic feature in the deformation of many other materials. Moreover, it should provide a framework for discussing fundamental aspects of plasticity, that goes beyond standard mean-field approaches that see plastic deformation as a smooth laminar flow

    Lattice dynamics and correlated atomic motion from the atomic pair distribution function

    Full text link
    The mean-square relative displacements (MSRD) of atomic pair motions in crystals are studied as a function of pair distance and temperature using the atomic pair distribution function (PDF). The effects of the lattice vibrations on the PDF peak widths are modelled using both a multi-parameter Born von-Karman (BvK) force model and a single-parameter Debye model. These results are compared to experimentally determined PDFs. We find that the near-neighbor atomic motions are strongly correlated, and that the extent of this correlation depends both on the interatomic interactions and crystal structure. These results suggest that proper account of the lattice vibrational effects on the PDF peak width is important in extracting information on static disorder in a disordered system such as an alloy. Good agreement is obtained between the BvK model calculations of PDF peak widths and the experimentally determined peak widths. The Debye model successfully explains the average, though not detailed, natures of the MSRD of atomic pair motion with just one parameter. Also the temperature dependence of the Debye model largely agrees with the BvK model predictions. Therefore, the Debye model provides a simple description of the effects of lattice vibrations on the PDF peak widths.Comment: 9 pages, 11 figure

    Left-right symmetry at LHC and precise 1-loop low energy data

    Get PDF
    Despite many tests, even the Minimal Manifest Left-Right Symmetric Model (MLRSM) has never been ultimately confirmed or falsified. LHC gives a new possibility to test directly the most conservative version of left-right symmetric models at so far not reachable energy scales. If we take into account precise limits on the model which come from low energy processes, like the muon decay, possible LHC signals are strongly limited through the correlations of parameters among heavy neutrinos, heavy gauge bosons and heavy Higgs particles. To illustrate the situation in the context of LHC, we consider the "golden" process ppe+Npp \to e^+ N. For instance, in a case of degenerate heavy neutrinos and heavy Higgs masses at 15 TeV (in agreement with FCNC bounds) we get σ(ppe+N)>10\sigma(pp \to e^+ N)>10 fb at s=14\sqrt{s}=14 TeV which is consistent with muon decay data for a very limited W2W_2 masses in the range (3008 GeV, 3040 GeV). Without restrictions coming from the muon data, W2W_2 masses would be in the range (1.0 TeV, 3.5 TeV). Influence of heavy Higgs particles themselves on the considered LHC process is negligible (the same is true for the light, SM neutral Higgs scalar analog). In the paper decay modes of the right-handed heavy gauge bosons and heavy neutrinos are also discussed. Both scenarios with typical see-saw light-heavy neutrino mixings and the mixings which are independent of heavy neutrino masses are considered. In the second case heavy neutrino decays to the heavy charged gauge bosons not necessarily dominate over decay modes which include only light, SM-like particles.Comment: 16 pages, 10 figs, KL-KS and new ATLAS limits taken into accoun

    Modifying the hydrophobic nature of MAF-6

    Get PDF
    Using a combination of molecular simulations techniques, we evaluate the structural tunability of the metal azolate framework with zeolitic RHO topology, MAF-6. Two mechanisms are explored to induce hydrophilicity to this hydrophobic material. The study at a molecular level of water adsorption takes place under a variety of conditions. On a first step, we consider water mixtures containing benzene or alcohols, paying special attention to the effect of the size of the alcohol molecules. On a second approach, we analyse the effect of small weight percentages of salt into the MAF-6 on the water adsorption. We first validate the accuracy of the host–guest interactions by reproducing experimental data. A new set of Lennard-Jones parameters for the interaction water- MAF-6 is also provided. The water adsorption behaviour of MAF-6 is studied in terms of adsorption isotherms, heats of adsorption, radial distribution functions, hydrogen bonds formation, and water distribution inside the material. We found that the presence of long molecules of alcohols favours the water adsorption at low values of pressure by smoothing the phase transition of water withing the MAF-6. On the other hand the addition of salt to the structure creates additional adsorption sites for water enhancing its adsorption, while reducing the saturation capacity of the material since the presence of salt reduces the accessible pore volume

    Thermo-Mechanical Treatment Effects on Stress Relaxation and Hydrogen Embrittlement of Cold-Drawn Eutectoid Steels

    Get PDF
    The effects of the temperature and stretching levels used in the stress-relieving treatment of cold-drawn eutectoid steel wires are evaluated with the aim of improving the stress relaxation behavior and the resistance to hydrogen embrittlement. Five industrial treatments are studied, combining three temperatures (330, 400, and 460 °C) and three stretching levels (38, 50 and 64% of the rupture load). The change of the residual stress produced by the treatments is taken into consideration to account for the results. Surface residual stresses allow us to explain the time to failure in standard hydrogen embrittlement test

    Adsorption of hydrogen sulphide on Metal-Organic Frameworks

    Get PDF
    Three new sets of interatomic potentials to model hydrogen sulphide (H2S) have been fitted. One of them is a 3-sites potential (which we named 3S) and the other two are 5-sites potentials (which we named 5S and 5Sd). The molecular dipole of the 3S and 5S potentials is 1.43 D, which is the value usually employed for H2S potentials, while the dipole of the 5Sd is the dipole measured experimentally for the H2S molecule, circa 0.974 D. The interatomic potentials parameters were obtained by fitting the experimental vapour-liquid equilibrium, vapour pressure and liquid density curves. The potential parameters fitted so far for H2S have been obtained applying long-range corrections to the Lennard-Jones energy. For that reason, when a cut and shift of the Lennard-Jones potentials is applied they do not yield the correct results. We employed a cut and shift of the Lennard-Jones potentials in the fitting procedure, which facilitates the use of the new potentials to model H2S adsorption on systems such as Metal-Organics Frameworks (MOFs). We have employed the newly developed potentials to study the adsorption of H2S on Cu-BTC, MIL-47 and IRMOF-1 and the results agree with the available electronic structures calculations. All calculations (both quantum and interatomic potential-based) predict that H2S does not bind to the Cu atoms in Cu-BTC
    corecore