371 research outputs found

    First-Digit Law in Nonextensive Statistics

    Full text link
    Nonextensive statistics, characterized by a nonextensive parameter qq, is a promising and practically useful generalization of the Boltzmann statistics to describe power-law behaviors from physical and social observations. We here explore the unevenness of the first digit distribution of nonextensive statistics analytically and numerically. We find that the first-digit distribution follows Benford's law and fluctuates slightly in a periodical manner with respect to the logarithm of the temperature. The fluctuation decreases when qq increases, and the result converges to Benford's law exactly as qq approaches 2. The relevant regularities between nonextensive statistics and Benford's law are also presented and discussed.Comment: 11 pages, 3 figures, published in Phys. Rev.

    Shift in critical temperature for random spatial permutations with cycle weights

    Full text link
    We examine a phase transition in a model of random spatial permutations which originates in a study of the interacting Bose gas. Permutations are weighted according to point positions; the low-temperature onset of the appearance of arbitrarily long cycles is connected to the phase transition of Bose-Einstein condensates. In our simplified model, point positions are held fixed on the fully occupied cubic lattice and interactions are expressed as Ewens-type weights on cycle lengths of permutations. The critical temperature of the transition to long cycles depends on an interaction-strength parameter α\alpha. For weak interactions, the shift in critical temperature is expected to be linear in α\alpha with constant of linearity cc. Using Markov chain Monte Carlo methods and finite-size scaling, we find c=0.618±0.086c = 0.618 \pm 0.086. This finding matches a similar analytical result of Ueltschi and Betz. We also examine the mean longest cycle length as a fraction of the number of sites in long cycles, recovering an earlier result of Shepp and Lloyd for non-spatial permutations.Comment: v2 incorporated reviewer comments. v3 removed two extraneous figures which appeared at the end of the PDF

    Distribution of roots of random real generalized polynomials

    Full text link
    The average density of zeros for monic generalized polynomials, Pn(z)=ϕ(z)+k=1nckfk(z)P_n(z)=\phi(z)+\sum_{k=1}^nc_kf_k(z), with real holomorphic ϕ,fk\phi ,f_k and real Gaussian coefficients is expressed in terms of correlation functions of the values of the polynomial and its derivative. We obtain compact expressions for both the regular component (generated by the complex roots) and the singular one (real roots) of the average density of roots. The density of the regular component goes to zero in the vicinity of the real axis like Imz|\hbox{\rm Im}\,z|. We present the low and high disorder asymptotic behaviors. Then we particularize to the large nn limit of the average density of complex roots of monic algebraic polynomials of the form Pn(z)=zn+k=1nckznkP_n(z) = z^n +\sum_{k=1}^{n}c_kz^{n-k} with real independent, identically distributed Gaussian coefficients having zero mean and dispersion δ=1nλ\delta = \frac 1{\sqrt{n\lambda}}. The average density tends to a simple, {\em universal} function of ξ=2nlogz\xi={2n}{\log |z|} and λ\lambda in the domain ξcothξ2nsinarg(z)\xi\coth \frac{\xi}{2}\ll n|\sin \arg (z)| where nearly all the roots are located for large nn.Comment: 17 pages, Revtex. To appear in J. Stat. Phys. Uuencoded gz-compresed tarfile (.66MB) containing 8 Postscript figures is available by e-mail from [email protected]

    Artificial Sequences and Complexity Measures

    Get PDF
    In this paper we exploit concepts of information theory to address the fundamental problem of identifying and defining the most suitable tools to extract, in a automatic and agnostic way, information from a generic string of characters. We introduce in particular a class of methods which use in a crucial way data compression techniques in order to define a measure of remoteness and distance between pairs of sequences of characters (e.g. texts) based on their relative information content. We also discuss in detail how specific features of data compression techniques could be used to introduce the notion of dictionary of a given sequence and of Artificial Text and we show how these new tools can be used for information extraction purposes. We point out the versatility and generality of our method that applies to any kind of corpora of character strings independently of the type of coding behind them. We consider as a case study linguistic motivated problems and we present results for automatic language recognition, authorship attribution and self consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression approach to Information Extraction and Classification" by A. Baronchelli and V. Loreto. 15 pages; 5 figure

    Stable Distributions in Stochastic Fragmentation

    Full text link
    We investigate a class of stochastic fragmentation processes involving stable and unstable fragments. We solve analytically for the fragment length density and find that a generic algebraic divergence characterizes its small-size tail. Furthermore, the entire range of acceptable values of decay exponent consistent with the length conservation can be realized. We show that the stochastic fragmentation process is non-self-averaging as moments exhibit significant sample-to-sample fluctuations. Additionally, we find that the distributions of the moments and of extremal characteristics possess an infinite set of progressively weaker singularities.Comment: 11 pages, 5 figure

    Equidistribution of zeros of holomorphic sections in the non compact setting

    Full text link
    We consider N-tensor powers of a positive Hermitian line bundle L over a non-compact complex manifold X. In the compact case, B. Shiffman and S. Zelditch proved that the zeros of random sections become asymptotically uniformly distributed with respect to the natural measure coming from the curvature of L, as N tends to infinity. Under certain boundedness assumptions on the curvature of the canonical line bundle of X and on the Chern form of L we prove a non-compact version of this result. We give various applications, including the limiting distribution of zeros of cusp forms with respect to the principal congruence subgroups of SL2(Z) and to the hyperbolic measure, the higher dimensional case of arithmetic quotients and the case of orthogonal polynomials with weights at infinity. We also give estimates for the speed of convergence of the currents of integration on the zero-divisors.Comment: 25 pages; v.2 is a final update to agree with the published pape

    Functionals of the Brownian motion, localization and metric graphs

    Full text link
    We review several results related to the problem of a quantum particle in a random environment. In an introductory part, we recall how several functionals of the Brownian motion arise in the study of electronic transport in weakly disordered metals (weak localization). Two aspects of the physics of the one-dimensional strong localization are reviewed : some properties of the scattering by a random potential (time delay distribution) and a study of the spectrum of a random potential on a bounded domain (the extreme value statistics of the eigenvalues). Then we mention several results concerning the diffusion on graphs, and more generally the spectral properties of the Schr\"odinger operator on graphs. The interest of spectral determinants as generating functions characterizing the diffusion on graphs is illustrated. Finally, we consider a two-dimensional model of a charged particle coupled to the random magnetic field due to magnetic vortices. We recall the connection between spectral properties of this model and winding functionals of the planar Brownian motion.Comment: Review article. 50 pages, 21 eps figures. Version 2: section 5.5 and conclusion added. Several references adde

    Some Problems in Probabilistic Tomography

    Get PDF
    Given probability distributions F1 , F2 , . . ., Fk on R and distinct directions θ1, . . ., θk, one may ask whether there is a probability measure μ on R2 such that the marginal of μ in direction θj is Fj, j = 1, . . ., k. For example for k = 3 we ask what the marginal of μ at 45° can be if the x and y marginals are each say standard normal? In probabilistic language, if X and Y are each standard normal with an arbitrary joint distribution, what can the distribution of X + Y or X - Y be? This type of question is familiar to probabilists and is also familiar (except perhaps in that μ is positive) to tomographers, but is difficult to answer in special cases. The set of distributions for Z = X - Y is a convex and compact set, C, which contains the single point mass Z ≡ 0 since X ≡ Y, standard normal, is possible. We show that Z can be 3-valued, Z=0, ±a for any a, each with positive probability, but Z cannot have any (genuine) two-point distribution. Using numerical linear programming we present convincing evidence that Z can be uniform on the interval [-ε, ε] for ε small and give estimates for the largest such ε. The set of all extreme points of C seems impossible to determine explicitly. We also consider the more basic question of finding the extreme measures on the unit square with uniform marginals on both coordinates, and show that not every such measure has a support which has only one point on each horizontal or vertical line, which seems surprising

    Stationary Gaussian Markov Processes as Limits of Stationary Autoregressive Time Series

    Get PDF
    We consider the class, ℂp, of all zero mean stationary Gaussian processes, {Yt : t ∈ (—∞, ∞)} with p derivatives, for which the vector valued process {(Yt(0) ,...,Yt(p)) : t ≥ 0} is a p + 1-vector Markov process, where Yt(0) = Y(t). We provide a rigorous description and treatment of these stationary Gaussian processes as limits of stationary AR(p) time series

    A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate

    Get PDF
    One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described
    corecore