371 research outputs found
First-Digit Law in Nonextensive Statistics
Nonextensive statistics, characterized by a nonextensive parameter , is a
promising and practically useful generalization of the Boltzmann statistics to
describe power-law behaviors from physical and social observations. We here
explore the unevenness of the first digit distribution of nonextensive
statistics analytically and numerically. We find that the first-digit
distribution follows Benford's law and fluctuates slightly in a periodical
manner with respect to the logarithm of the temperature. The fluctuation
decreases when increases, and the result converges to Benford's law exactly
as approaches 2. The relevant regularities between nonextensive statistics
and Benford's law are also presented and discussed.Comment: 11 pages, 3 figures, published in Phys. Rev.
Shift in critical temperature for random spatial permutations with cycle weights
We examine a phase transition in a model of random spatial permutations which
originates in a study of the interacting Bose gas. Permutations are weighted
according to point positions; the low-temperature onset of the appearance of
arbitrarily long cycles is connected to the phase transition of Bose-Einstein
condensates. In our simplified model, point positions are held fixed on the
fully occupied cubic lattice and interactions are expressed as Ewens-type
weights on cycle lengths of permutations. The critical temperature of the
transition to long cycles depends on an interaction-strength parameter
. For weak interactions, the shift in critical temperature is expected
to be linear in with constant of linearity . Using Markov chain
Monte Carlo methods and finite-size scaling, we find .
This finding matches a similar analytical result of Ueltschi and Betz. We also
examine the mean longest cycle length as a fraction of the number of sites in
long cycles, recovering an earlier result of Shepp and Lloyd for non-spatial
permutations.Comment: v2 incorporated reviewer comments. v3 removed two extraneous figures
which appeared at the end of the PDF
Distribution of roots of random real generalized polynomials
The average density of zeros for monic generalized polynomials,
, with real holomorphic and
real Gaussian coefficients is expressed in terms of correlation functions of
the values of the polynomial and its derivative. We obtain compact expressions
for both the regular component (generated by the complex roots) and the
singular one (real roots) of the average density of roots. The density of the
regular component goes to zero in the vicinity of the real axis like
. We present the low and high disorder asymptotic
behaviors. Then we particularize to the large limit of the average density
of complex roots of monic algebraic polynomials of the form with real independent, identically distributed
Gaussian coefficients having zero mean and dispersion . The average density tends to a simple, {\em universal}
function of and in the domain where nearly all the roots are located for
large .Comment: 17 pages, Revtex. To appear in J. Stat. Phys. Uuencoded gz-compresed
tarfile (.66MB) containing 8 Postscript figures is available by e-mail from
[email protected]
Artificial Sequences and Complexity Measures
In this paper we exploit concepts of information theory to address the
fundamental problem of identifying and defining the most suitable tools to
extract, in a automatic and agnostic way, information from a generic string of
characters. We introduce in particular a class of methods which use in a
crucial way data compression techniques in order to define a measure of
remoteness and distance between pairs of sequences of characters (e.g. texts)
based on their relative information content. We also discuss in detail how
specific features of data compression techniques could be used to introduce the
notion of dictionary of a given sequence and of Artificial Text and we show how
these new tools can be used for information extraction purposes. We point out
the versatility and generality of our method that applies to any kind of
corpora of character strings independently of the type of coding behind them.
We consider as a case study linguistic motivated problems and we present
results for automatic language recognition, authorship attribution and self
consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression
approach to Information Extraction and Classification" by A. Baronchelli and
V. Loreto. 15 pages; 5 figure
Stable Distributions in Stochastic Fragmentation
We investigate a class of stochastic fragmentation processes involving stable
and unstable fragments. We solve analytically for the fragment length density
and find that a generic algebraic divergence characterizes its small-size tail.
Furthermore, the entire range of acceptable values of decay exponent consistent
with the length conservation can be realized. We show that the stochastic
fragmentation process is non-self-averaging as moments exhibit significant
sample-to-sample fluctuations. Additionally, we find that the distributions of
the moments and of extremal characteristics possess an infinite set of
progressively weaker singularities.Comment: 11 pages, 5 figure
Equidistribution of zeros of holomorphic sections in the non compact setting
We consider N-tensor powers of a positive Hermitian line bundle L over a
non-compact complex manifold X. In the compact case, B. Shiffman and S.
Zelditch proved that the zeros of random sections become asymptotically
uniformly distributed with respect to the natural measure coming from the
curvature of L, as N tends to infinity. Under certain boundedness assumptions
on the curvature of the canonical line bundle of X and on the Chern form of L
we prove a non-compact version of this result. We give various applications,
including the limiting distribution of zeros of cusp forms with respect to the
principal congruence subgroups of SL2(Z) and to the hyperbolic measure, the
higher dimensional case of arithmetic quotients and the case of orthogonal
polynomials with weights at infinity. We also give estimates for the speed of
convergence of the currents of integration on the zero-divisors.Comment: 25 pages; v.2 is a final update to agree with the published pape
Functionals of the Brownian motion, localization and metric graphs
We review several results related to the problem of a quantum particle in a
random environment.
In an introductory part, we recall how several functionals of the Brownian
motion arise in the study of electronic transport in weakly disordered metals
(weak localization).
Two aspects of the physics of the one-dimensional strong localization are
reviewed : some properties of the scattering by a random potential (time delay
distribution) and a study of the spectrum of a random potential on a bounded
domain (the extreme value statistics of the eigenvalues).
Then we mention several results concerning the diffusion on graphs, and more
generally the spectral properties of the Schr\"odinger operator on graphs. The
interest of spectral determinants as generating functions characterizing the
diffusion on graphs is illustrated.
Finally, we consider a two-dimensional model of a charged particle coupled to
the random magnetic field due to magnetic vortices. We recall the connection
between spectral properties of this model and winding functionals of the planar
Brownian motion.Comment: Review article. 50 pages, 21 eps figures. Version 2: section 5.5 and
conclusion added. Several references adde
Some Problems in Probabilistic Tomography
Given probability distributions F1 , F2 , . . ., Fk on R and distinct directions θ1, . . ., θk, one may ask whether there is a probability measure μ on R2 such that the marginal of μ in direction θj is Fj, j = 1, . . ., k. For example for k = 3 we ask what the marginal of μ at 45° can be if the x and y marginals are each say standard normal? In probabilistic language, if X and Y are each standard normal with an arbitrary joint distribution, what can the distribution of X + Y or X - Y be? This type of question is familiar to probabilists and is also familiar (except perhaps in that μ is positive) to tomographers, but is difficult to answer in special cases. The set of distributions for Z = X - Y is a convex and compact set, C, which contains the single point mass Z ≡ 0 since X ≡ Y, standard normal, is possible. We show that Z can be 3-valued, Z=0, ±a for any a, each with positive probability, but Z cannot have any (genuine) two-point distribution. Using numerical linear programming we present convincing evidence that Z can be uniform on the interval [-ε, ε] for ε small and give estimates for the largest such ε. The set of all extreme points of C seems impossible to determine explicitly.
We also consider the more basic question of finding the extreme measures on the unit square with uniform marginals on both coordinates, and show that not every such measure has a support which has only one point on each horizontal or vertical line, which seems surprising
Stationary Gaussian Markov Processes as Limits of Stationary Autoregressive Time Series
We consider the class, ℂp, of all zero mean stationary Gaussian processes, {Yt : t ∈ (—∞, ∞)} with p derivatives, for which the vector valued process {(Yt(0) ,...,Yt(p)) : t ≥ 0} is a p + 1-vector Markov process, where Yt(0) = Y(t). We provide a rigorous description and treatment of these stationary Gaussian processes as limits of stationary AR(p) time series
A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate
One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described
- …
