10,609 research outputs found

    Vortex generation in a superfluid gas of dipolar chains in crossed electric and magnetic fields

    Full text link
    Crossed electric and magnetic fields influence dipolar neutral particles in the same way as the magnetic field influences charged particles. The effect of crossed fields is proportional to the dipole moment of the particle (inherent or induced). We show that this effect is quite spectacular in a multilayer system of polar molecules. In this system molecules may bind in chains. At low temperature the gas of chains becomes the superfluid one. The crossed fields then induce vortices in the superfluid gas of chains. The density of vortices is proportional to the number of particles in the chain. The effect can be used for monitoring the formation and destruction of chains in multilayer dipolar gases.Comment: To appear in Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No.

    Locking and unlocking of the counterflow transport in nu=1 quantum Hall bilayers by tilting of magnetic field

    Full text link
    The counterflow transport in quantum Hall bilayers provided by superfluid excitons is locked at small input currents due to a complete leakage caused by the interlayer tunneling. We show that the counterflow critical current I_c^{CF} above which the system unlocks for the counterflow transport can be controlled by a tilt of magnetic field in the plane perpendicular to the current direction. The effect is asymmetric with respect to the tilting angle. The unlocking is accompanied by switching of the systems from the d.c. to the a.c. Josephson state. Similar switching takes place for the tunneling set-up when the current flowing through the system exceeds the critical value I_c^T. At zero tilt the relation between the tunnel and counterflow critical currents is I_c^T=2 I_c^{CF}. We compare the influence of the in-plane magnetic field component B_\parallel on the critical currents I_c^{CF} and I_c^T. The in-plane magnetic field reduces the tunnel critical current and this reduction is symmetric with respect to the tilting angle. It is shown that the difference between I_c^{CF} and I_c^T is essential at field |B_\parallel|\lesssim \phi_0/d \lambda_J, where \phi_0 is the flux quantum, d is the interlayer distance, and \lambda_J is the Josephson length. At larger B_\parallel the critical currents I_c^{CF} and I_c^T almost coincide each other.Comment: 10 pages, 1 fi

    Relaxation of superflow in a network: an application to the dislocation model of supersolidity of helium crystals

    Full text link
    We have considered the dislocation network model for the supersolid state in He-4 crystals. In difference with uniform 2D and 3D systems, the temperature of superfluid transition T_c in the network is much smaller than the degeneracy temperature T_d. It is shown that a crossover into a quasi superfluid state occurs in the temperature interval between T_c and T_d. Below the crossover temperature the time of decay of the flow increases exponentially under decrease of the temperature. The crossover has a continuous character and the crossover temperature does not depend on the density of dislocations.Comment: Corrected typo

    Quenched Dislocation Enhanced Supersolid Ordering

    Full text link
    I show using Landau theory that quenched dislocations can facilitate the supersolid (SS) to normal solid (NS) transition, making it possible for the transition to occur even if it does not in a dislocation-free crystal. I make detailed predictions for the dependence of the SS to NS transition temperature T_c(L), superfluid density %\rho_S(T, L), and specific heat C(T,L) on temperature T and dislocation spacing L, all of which can be tested against experiments. The results should also be applicable to an enormous variety of other systems, including, e.g., ferromagnets.Comment: 5 pages, 2 figure

    Drag of superfluid current in bilayer Bose systems

    Get PDF
    An effect of nondissipative drag of a superfluid flow in a system of two Bose gases confined in two parallel quasi two-dimensional traps is studied. Using an approach based on introduction of density and phase operators we compute the drag current at zero and finite temperatures for arbitrary ratio of densities of the particles in the adjacent layers. We demonstrate that in a system of two ring-shape traps the "drag force" influences on the drag trap in the same way as an external magnetic flux influences on a superconducting ring. It allows to use the drag effect to control persistent current states in superfluids and opens a possibility for implementing a Bose analog of the superconducting Josephson flux qubit.Comment: 12 pages, 2 figures, new section is added, refs are adde

    Charge ordering and interlayer phase coherence in quantum Hall superlattices

    Full text link
    The possibility of the existence of states with a spontaneous interlayer phase coherence in multilayer electron systems in a high perpendicular to the layers magnetic field is investigated. It is shown that phase coherence can be established in such systems only within individual pairs of adjacent layers, while such coherence does not exist between layers of different pairs. The conditions for stability of the state with interlayer phase coherence against transition to a charge-ordered state are determined. It is shown that in the system with the number of layers N\leq 10 these conditions are satisfied at any value of the interlayer distance d. For N>10 there are two intervals of stability: at sufficiently large and at sufficiently small d. For N\to \infty the stability interval in the region of small d vanishesComment: 10 page
    corecore