13,038 research outputs found
Josephson Plasma in RuSr2GdCu2O8
Josephson plasma in RuSrGdCuO,
RuSrGdCuO (x = 0.3), and
RuSrEuCeCuO (x = 0.5) compounds is
investigated by the sphere resonance method. The Josephson plasma is observed
in a low-frequency region (around 8.5 cm at T ) for
ferromagnetic RuSrGdCuO, while it increases to 35 cm
for non-ferromagnetic RuSrGdCuO (x = 0.3), which
represents a large reduction in the Josephson coupling at ferromagnetic
RuO block layers. The temperature dependence of the plasma does not shift
to zero frequency ({\it i.e.} = 0) at low temperatures, indicating that
there is no transition from the 0-phase to the -phase in these compounds.
The temperature dependence and the oscillator strength of the peak are
different from those of other non-magnetic cuprates, and the origins of these
anomalies are discussed.Comment: to appear in Phys. Rev.B Rapid Com
Black Hole-Neutron Star Mergers: Disk Mass Predictions
Determining the final result of black hole-neutron star mergers, and in
particular the amount of matter remaining outside the black hole at late times
and its properties, has been one of the main motivations behind the numerical
simulation of these systems. Black hole-neutron star binaries are amongst the
most likely progenitors of short gamma-ray bursts --- as long as massive
(probably a few percents of a solar mass), hot accretion disks are formed
around the black hole. Whether this actually happens strongly depends on the
physical characteristics of the system, and in particular on the mass ratio,
the spin of the black hole, and the radius of the neutron star. We present here
a simple two-parameter model, fitted to existing numerical results, for the
determination of the mass remaining outside the black hole a few milliseconds
after a black hole-neutron star merger (i.e. the combined mass of the accretion
disk, the tidal tail, and the potential ejecta). This model predicts the
remnant mass within a few percents of the mass of the neutron star, at least
for remnant masses up to 20% of the neutron star mass. Results across the range
of parameters deemed to be the most likely astrophysically are presented here.
We find that, for 10 solar mass black holes, massive disks are only possible
for large neutron stars (R>12km), or quasi-extremal black hole spins (a/M>0.9).
We also use our model to discuss how the equation of state of the neutron star
affects the final remnant, and the strong influence that this can have on the
rate of short gamma-ray bursts produced by black hole-neutron star mergers.Comment: 11 pages, 7 figure
Recommended from our members
Mutational signatures in colon cancer.
ObjectiveRecently, many tumor sequencing studies have inferred and reported on mutational signatures, short nucleotide patterns at which particular somatic base substitutions appear more often. A number of signatures reflect biological processes in the patient and factors associated with cancer risk. Our goal is to infer mutational signatures appearing in colon cancer, a cancer for which environmental risk factors vary by cancer subtype, and compare the signatures to those in adult stem cells from normal colon. We also compare the mutational signatures to others in the literature.ResultsWe apply a probabilistic mutation signature model to somatic mutations previously reported for six adult normal colon stem cells and 431 colon adenocarcinomas. We infer six mutational signatures in colon cancer, four being specific to tumors with hypermutation. Just two signatures explained the majority of mutations in the small number of normal aging colon samples. All six signatures are independently identified in a series of 295 Chinese colorectal cancers
Gravitational waves from nonspinning black hole-neutron star binaries: dependence on equations of state
We report results of a numerical-relativity simulation for the merger of a
black hole-neutron star binary with a variety of equations of state (EOSs)
modeled by piecewise polytropes. We focus in particular on the dependence of
the gravitational waveform at the merger stage on the EOSs. The initial
conditions are computed in the moving-puncture framework, assuming that the
black hole is nonspinning and the neutron star has an irrotational velocity
field. For a small mass ratio of the binaries (e.g., MBH/MNS = 2 where MBH and
MNS are the masses of the black hole and neutron star, respectively), the
neutron star is tidally disrupted before it is swallowed by the black hole
irrespective of the EOS. Especially for less-compact neutron stars, the tidal
disruption occurs at a more distant orbit. The tidal disruption is reflected in
a cutoff frequency of the gravitational-wave spectrum, above which the spectrum
amplitude exponentially decreases. A clear relation is found between the cutoff
frequency of the gravitational-wave spectrum and the compactness of the neutron
star. This relation also depends weakly on the stiffness of the EOS in the core
region of the neutron star, suggesting that not only the compactness but also
the EOS at high density is reflected in gravitational waveforms. The mass of
the disk formed after the merger shows a similar correlation with the EOS,
whereas the spin of the remnant black hole depends primarily on the mass ratio
of the binary, and only weakly on the EOS. Properties of the remnant disks are
also analyzed.Comment: 27pages, 21 figures; erratum is added on Aug 5. 201
Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas
A numerical study of magnetic reconnection in the large-Lundquist-number
(), plasmoid-dominated regime is carried out for up to . The
theoretical model of Uzdensky {\it et al.} [Phys. Rev. Lett. {\bf 105}, 235002
(2010)] is confirmed and partially amended. The normalized reconnection rate is
\normEeff\sim 0.02 independently of for . The plasmoid flux
() and half-width () distribution functions scale as and . The joint distribution of and
shows that plasmoids populate a triangular region ,
where is the reconnecting field. It is argued that this feature is due to
plasmoid coalescence. Macroscopic "monster" plasmoids with % of the
system size are shown to emerge in just a few Alfv\'en times, independently of
, suggesting that large disruptive events are an inevitable feature of
large- reconnection.Comment: 5 pages, 6 figures, submitted for publicatio
Magnetically Driven Jets in the Kerr Metric
We compute a series of three-dimensional general relativistic
magnetohydrodynamic simulations of accretion flows in the Kerr metric to
investigate the properties of the unbound outflows that result. The overall
strength of these outflows increases sharply with increasing black hole
rotation rate, but a number of generic features are found in all cases. The
mass in the outflow is concentrated in a hollow cone whose opening angle is
largely determined by the effective potential for matter orbiting with angular
momentum comparable to that of the innermost stable circular orbit. The
dominant force accelerating the matter outward comes from the pressure of the
accretion disk's corona. The principal element that shapes the outflow is
therefore the centrifugal barrier preventing accreting matter from coming close
to the rotation axis. Inside the centrifugal barrier, the cone contains very
little matter and is dominated by electromagnetic fields that rotate at a rate
tied closely to the rotation of the black hole. These fields carry an
outward-going Poynting flux whose immediate energy source is the rotating
spacetime of the Kerr black hole. When the spin parameter a/M of the black hole
exceeds ~0.9, the energy carried to infinity by these outflows can be
comparable to the nominal radiative efficiency predicted in the Novikov-Thorne
model. Similarly, the expelled angular momentum can be comparable to that
accreted by the black hole. Both the inner electromagnetic part and the outer
matter part can contribute in significant fashion to the energy and angular
momentum of the outflow.Comment: 43 pages 12 figures To Appear in the Astrophysical Journal replaced
figure 3c with correct imag
Possible explanation for star-crushing effect in binary neutron star simulations
A possible explanation is suggested for the controversial star-crushing
effect seen in numerical simulations of inspiraling neutron star binaries by
Wilson, Mathews and Marronetti (WMM). An apparently incorrect definition of
momentum density in the momentum constraint equation used by WMM gives rise to
a post-1-Newtonian error in the approximation scheme. We show by means of an
analytic, post-1-Newtonian calculation that this error causes an increase of
the stars' central densities which is of the order of several percent when the
stars are separated by a few stellar radii, in agreement with what is seen in
the simulations.Comment: 4 pages, 1 figure, uses revetx macros, minor revision
- …
