709 research outputs found
Electronic states in heterostructures formed by ultranarrow layers
Low-energy electronic states in heterosrtuctures formed by ultranarrow layer
(single or several monolayers thickness) are studied theoretically. The host
material is described within the effective mass approximation and effect of
ultranarrow layers is taken into account within the framework of the transfer
matrix approach. Using the current conservation requirement and the inversion
symmetry of ultranarrow layer, the transfer matrix is written through two
phenomenological parameters. The binding energy of localized state, the
reflection (transmission) coefficient for the single ultranarrow layer case,
and the energy spectrum of superlattice are determined by these parameters.
Spectral dependency of absorption in superlattice due to photoexcitation of
electrons from localized states into minibands is strongly dependent on the
ultranarrow layers characteristics. Such a dependency can be used for
verification of the transfer matrix parameters.Comment: 7 pages, 7 figure
Observation of topological superconductivity on the surface of an iron-based superconductor
Topological superconductors, whose edge hosts Majorana bound states or
Majorana fermions that obey non-Abelian statistics, can be used for
low-decoherence quantum computations. Most of the proposed topological
superconductors are realized with spin-helical states through proximity effect
to BCS superconductors. However, such approaches are difficult for further
studies and applications because of the low transition temperatures and
complicated hetero-structures. Here by using high-resolution spin-resolved and
angle-resolved photoelectron spectroscopy, we discover that the iron-based
superconductor FeTe1-xSex (x = 0.45, Tc = 14.5 K) hosts Dirac-cone type
spin-helical surface states at Fermi level, which open an s-wave SC gap below
Tc. Our study proves that the surface states of FeTe0.55Se0.45 are 2D
topologically superconducting, and thus provides a simple and possibly high-Tc
platform for realizing Majorana fermions.Comment: 10 pages, 5 figures. 1706.05163, 1803.00845 and 1803.00846 are a
series of studies on topological superconductivity and topological states in
iron-based superconductor
Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement
Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell–cell signaling can depend on cell–cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell–cell signaling that induces a directed cell–cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell–cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell–cell distances. We show that glioblastoma cell–cell movement can be described as Brownian motion biased by cell–cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells
Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field
We study the effects of dissipation on electron transport in a semiconductor
superlattice with an applied bias voltage and a magnetic field that is tilted
relative to the superlattice axis.In previous work, we showed that although the
applied fields are stationary,they act like a THz plane wave, which strongly
couples the Bloch and cyclotron motion of electrons within the lowest miniband.
As a consequence,the electrons exhibit a unique type of Hamiltonian chaos,
which creates an intricate mesh of conduction channels (a stochastic web) in
phase space, leading to a large resonant increase in the current flow at
critical values of the applied voltage. This phase-space patterning provides a
sensitive mechanism for controlling electrical resistance. In this paper, we
investigate the effects of dissipation on the electron dynamics by modifying
the semiclassical equations of motion to include a linear damping term. We
demonstrate that even in the presence of dissipation,deterministic chaos plays
an important role in the electron transport process. We identify mechanisms for
the onset of chaos and explore the associated sequence of bifurcations in the
electron trajectories. When the Bloch and cyclotron frequencies are
commensurate, complex multistability phenomena occur in the system. In
particular, for fixed values of the control parameters several distinct stable
regimes can coexist, each corresponding to different initial conditions. We
show that this multistability has clear, experimentally-observable, signatures
in the electron transport characteristics.Comment: 14 pages 11 figure
Electron beam induced current in InSb-InAs nanowire type-III heterostructures
InSb-InAs nanowire heterostructure diodes investigated by electron beam induced current (EBIC) demonstrate an unusual spatial profile where the sign of the EBIC signal changes in the vicinity of the heterointerface. A qualitative explanation confirmed by theoretical calculations is based on the specific band diagram of the structure representing a type-III heterojunction with an accumulation layer in InAs. The sign of the EBIC signal depends on the specific parameters of this layer. In the course of measurements, the diffusion length of holes in InAs and its temperature dependence are also determined
Terahertz imaging and spectroscopy of large-area single-layer graphene
We demonstrate terahertz (THz) imaging and spectroscopy of a 15x15-mm^2
single-layer graphene film on Si using broadband THz pulses. The THz images
clearly map out the THz carrier dynamics of the graphene-on-Si sample, allowing
us to measure sheet conductivity with sub-mm resolution without fabricating
electrodes. The THz carrier dynamics are dominated by intraband transitions and
the THz-induced electron motion is characterized by a flat spectral response. A
theoretical analysis based on the Fresnel coefficients for a metallic thin film
shows that the local sheet conductivity varies across the sample from {\sigma}s
= 1.7x10^-3 to 2.4x10^-3 {\Omega}^-1 (sheet resistance, {\rho}s = 420 - 590
{\Omega}/sq).Comment: 6 pages, 5 figure
Recommended from our members
Ischemic axonal injury up-regulates MARK4 in cortical neurons and primes tau phosphorylation and aggregation.
Ischemic injury to white matter tracts is increasingly recognized to play a key role in age-related cognitive decline, vascular dementia, and Alzheimer's disease. Knowledge of the effects of ischemic axonal injury on cortical neurons is limited yet critical to identifying molecular pathways that link neurodegeneration and ischemia. Using a mouse model of subcortical white matter ischemic injury coupled with retrograde neuronal tracing, we employed magnetic affinity cell sorting with fluorescence-activated cell sorting to capture layer-specific cortical neurons and performed RNA-sequencing. With this approach, we identified a role for microtubule reorganization within stroke-injured neurons acting through the regulation of tau. We find that subcortical stroke-injured Layer 5 cortical neurons up-regulate the microtubule affinity-regulating kinase, Mark4, in response to axonal injury. Stroke-induced up-regulation of Mark4 is associated with selective remodeling of the apical dendrite after stroke and the phosphorylation of tau in vivo. In a cell-based tau biosensor assay, Mark4 promotes the aggregation of human tau in vitro. Increased expression of Mark4 after ischemic axonal injury in deep layer cortical neurons provides new evidence for synergism between axonal and neurodegenerative pathologies by priming of tau phosphorylation and aggregation
Electrical excitation of shock and soliton-like waves in two-dimensional electron channels
We study electrical excitation of nonlinear plasma waves in heterostructures
with two-dimensional electron channels and with split gates, and the
propagation of these waves using hydrodynamic equations for electron transport
coupled with two-dimensional Poisson equation for self-consistent electric
potential. The term related to electron collisions with impurities and phonons
as well as the term associated with viscosity are included into the
hydrodynamic equations. We demonstrate the formation of shock and soliton-like
waves as a result of the evolution of strongly nonuniform initial electron
density distribution. It is shown that the shock wave front and the shape of
soliton-like pulses pronouncedly depend on the coefficient of viscosity, the
thickness of the gate layer and the nonuniformity of the donor distribution
along the channel. The electron collisions result in damping of the shock and
soliton-like waves, while they do not markedly affect the thickness of the
shock wave front.Comment: 9 pages, 11 figure
- …
