709 research outputs found

    Electronic states in heterostructures formed by ultranarrow layers

    Full text link
    Low-energy electronic states in heterosrtuctures formed by ultranarrow layer (single or several monolayers thickness) are studied theoretically. The host material is described within the effective mass approximation and effect of ultranarrow layers is taken into account within the framework of the transfer matrix approach. Using the current conservation requirement and the inversion symmetry of ultranarrow layer, the transfer matrix is written through two phenomenological parameters. The binding energy of localized state, the reflection (transmission) coefficient for the single ultranarrow layer case, and the energy spectrum of superlattice are determined by these parameters. Spectral dependency of absorption in superlattice due to photoexcitation of electrons from localized states into minibands is strongly dependent on the ultranarrow layers characteristics. Such a dependency can be used for verification of the transfer matrix parameters.Comment: 7 pages, 7 figure

    Observation of topological superconductivity on the surface of an iron-based superconductor

    Full text link
    Topological superconductors, whose edge hosts Majorana bound states or Majorana fermions that obey non-Abelian statistics, can be used for low-decoherence quantum computations. Most of the proposed topological superconductors are realized with spin-helical states through proximity effect to BCS superconductors. However, such approaches are difficult for further studies and applications because of the low transition temperatures and complicated hetero-structures. Here by using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we discover that the iron-based superconductor FeTe1-xSex (x = 0.45, Tc = 14.5 K) hosts Dirac-cone type spin-helical surface states at Fermi level, which open an s-wave SC gap below Tc. Our study proves that the surface states of FeTe0.55Se0.45 are 2D topologically superconducting, and thus provides a simple and possibly high-Tc platform for realizing Majorana fermions.Comment: 10 pages, 5 figures. 1706.05163, 1803.00845 and 1803.00846 are a series of studies on topological superconductivity and topological states in iron-based superconductor

    Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement

    Get PDF
    Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell–cell signaling can depend on cell–cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell–cell signaling that induces a directed cell–cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell–cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell–cell distances. We show that glioblastoma cell–cell movement can be described as Brownian motion biased by cell–cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells

    Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field

    Full text link
    We study the effects of dissipation on electron transport in a semiconductor superlattice with an applied bias voltage and a magnetic field that is tilted relative to the superlattice axis.In previous work, we showed that although the applied fields are stationary,they act like a THz plane wave, which strongly couples the Bloch and cyclotron motion of electrons within the lowest miniband. As a consequence,the electrons exhibit a unique type of Hamiltonian chaos, which creates an intricate mesh of conduction channels (a stochastic web) in phase space, leading to a large resonant increase in the current flow at critical values of the applied voltage. This phase-space patterning provides a sensitive mechanism for controlling electrical resistance. In this paper, we investigate the effects of dissipation on the electron dynamics by modifying the semiclassical equations of motion to include a linear damping term. We demonstrate that even in the presence of dissipation,deterministic chaos plays an important role in the electron transport process. We identify mechanisms for the onset of chaos and explore the associated sequence of bifurcations in the electron trajectories. When the Bloch and cyclotron frequencies are commensurate, complex multistability phenomena occur in the system. In particular, for fixed values of the control parameters several distinct stable regimes can coexist, each corresponding to different initial conditions. We show that this multistability has clear, experimentally-observable, signatures in the electron transport characteristics.Comment: 14 pages 11 figure

    Electron beam induced current in InSb-InAs nanowire type-III heterostructures

    Get PDF
    InSb-InAs nanowire heterostructure diodes investigated by electron beam induced current (EBIC) demonstrate an unusual spatial profile where the sign of the EBIC signal changes in the vicinity of the heterointerface. A qualitative explanation confirmed by theoretical calculations is based on the specific band diagram of the structure representing a type-III heterojunction with an accumulation layer in InAs. The sign of the EBIC signal depends on the specific parameters of this layer. In the course of measurements, the diffusion length of holes in InAs and its temperature dependence are also determined

    Terahertz imaging and spectroscopy of large-area single-layer graphene

    Full text link
    We demonstrate terahertz (THz) imaging and spectroscopy of a 15x15-mm^2 single-layer graphene film on Si using broadband THz pulses. The THz images clearly map out the THz carrier dynamics of the graphene-on-Si sample, allowing us to measure sheet conductivity with sub-mm resolution without fabricating electrodes. The THz carrier dynamics are dominated by intraband transitions and the THz-induced electron motion is characterized by a flat spectral response. A theoretical analysis based on the Fresnel coefficients for a metallic thin film shows that the local sheet conductivity varies across the sample from {\sigma}s = 1.7x10^-3 to 2.4x10^-3 {\Omega}^-1 (sheet resistance, {\rho}s = 420 - 590 {\Omega}/sq).Comment: 6 pages, 5 figure

    Electrical excitation of shock and soliton-like waves in two-dimensional electron channels

    Full text link
    We study electrical excitation of nonlinear plasma waves in heterostructures with two-dimensional electron channels and with split gates, and the propagation of these waves using hydrodynamic equations for electron transport coupled with two-dimensional Poisson equation for self-consistent electric potential. The term related to electron collisions with impurities and phonons as well as the term associated with viscosity are included into the hydrodynamic equations. We demonstrate the formation of shock and soliton-like waves as a result of the evolution of strongly nonuniform initial electron density distribution. It is shown that the shock wave front and the shape of soliton-like pulses pronouncedly depend on the coefficient of viscosity, the thickness of the gate layer and the nonuniformity of the donor distribution along the channel. The electron collisions result in damping of the shock and soliton-like waves, while they do not markedly affect the thickness of the shock wave front.Comment: 9 pages, 11 figure
    corecore