300 research outputs found

    Towards understanding dynamo action in M dwarfs

    Full text link
    Recent progress in observational studies of magnetic activity in M dwarfs urgently requires support from ideas of stellar dynamo theory. We propose a strategy to connect observational and theoretical studies. In particular, we suggest four magnetic configurations that appear relevant to dwarfs from the viewpoint of the most conservative version of dynamo theory, and discuss observational tests to identify the configurations observationally. As expected, any such identification contains substantial uncertainties. However the situation in general looks less pessimistic than might be expected. Several identifications between the phenomenology of individual stars and dynamo models are suggested. Remarkably, all models discussed predict substantial surface magnetic activity at rather high stellar latitudes. This prediction looks unexpected from the viewpoint of our experience observing the Sun (which of course differs in some fundamental ways from these late-type dwarfs). We stress that a fuller understanding of the topic requires a long-term (at least 15 years) monitoring of M dwarfs by Zeeman-Doppler imaging.Comment: 8 pages, 4 figures, accepted by MNRA

    Theoretical analysis of the atmospheres of CP stars. Effects of the individual abundance patterns

    Full text link
    Context. See abstract in the paper. Aims. See abstract in the paper. Methods. See abstract in the paper. Results. We present a homogeneous study of model atmosphere temperature structure, energy distribution, photometric indices in the uvbybeta and Delta_a systems, hydrogen line profiles, and the abundance determination procedure as it applies to CP stars. In particular, we found that Si, Cr and Fe are the main elements to influence model atmospheres of CP stars, and thus to be considered in order to assess the adequacy of model atmospheres with scaled solar abundances in application to CP stars. We provide a theoretical explanation of the robust property of the Delta_a photometric system to recognize CP stars with peculiar Fe content. Also, the results of our numerical tests using model atmospheres with one or several elements overabundant (Si and Fe by +1 dex, Cr by +2 dex) suggest that the uncertainty of abundance analysis in the atmospheres of CP stars using models with scaled abundances is less than plus/minus 0.25 dex. If the same homogeneous models are used for the abundance stratification analysis then we find that the uncertainty of the value of the vertical abundance gradient is within an 0.4 dex error bar. Conclusions. Model atmospheres with individual abundance patterns should be used in order to match the actual anomalies of CP stars and minimize analysis errors.Comment: 18 pages, 9 figure

    Interferometry of chemically peculiar stars: theoretical predictions vs. modern observing facilities

    Full text link
    By means of numerical experiments we explore the application of interferometry to the detection and characterization of abundance spots in chemically peculiar (CP) stars using the brightest star eps~Uma as a case study. We find that the best spectral regions to search for spots and stellar rotation signatures are in the visual domain. The spots can clearly be detected already at a first visibility lobe and their signatures can be uniquely disentangled from that of rotation. The spots and rotation signatures can also be detected in NIR at low spectral resolution but baselines longer than 180~m are needed for all potential CP candidates. According to our simulations, an instrument like VEGA (or its successor e.g., FRIEND) should be able to detect, in the visual, the effect of spots and spots+rotation, provided that the instrument is able to measure V2103V^2\approx10^{-3}, and/or closure phase. In infrared, an instrument like AMBER but with longer baselines than the ones available so far would be able to measure rotation and spots. Our study provides necessary details about strategies of spot detection and the requirements for modern and planned interferometric facilities essential for CP star research.Comment: Accepted by NMRAS, 18 pages, 11 figures, 2 table

    Exploring the magnetic field complexity in M dwarfs at the boundary to full convection

    Full text link
    Based on detailed spectral synthesis we carry out quantitative measurements of the strength and complexity of surface magnetic fields in the four well-known M-dwarfs GJ 388, GJ 729, GJ 285, and GJ 406 populating the mass regime around the boundary between partially and fully convective stars. Very high resolution R=100000, high signal-to-noise (up to 400) near-infrared Stokes I spectra were obtained with CRIRES at ESO's Very Large Telescope covering regions of the FeH Wing-Ford transitions at 1mum. The field distributions in all four stars are characterized by three distinct groups of field components, the data are neither consistent with a smooth distribution of different field strengths, nor with one average field strength covering the full star. We find evidence of a subtle difference in the field distribution of GJ 285 compared to the other three targets. GJ 285 also has the highest average field of 3.5kG and the strongest maximum field component of 7-7.5kG. The maximum local field strengths in our sample seem to be correlated with rotation rate. While the average field strength is saturated, the maximum local field strengths in our sample show no evidence for saturation. We find no difference between the field distributions of partially and fully convective stars. The one star with evidence for a field distribution different to the other three is the most active star (i.e. with largest x-ray luminosity and mean surface magnetic field) rotating relatively fast. A possible explanation is that rotation determines the distribution of surface magnetic fields, and that local field strengths grow with rotation even in stars in which the average field is already saturated.Comment: 15 pages, 8 figure

    Modelling the light variability of the Ap star epsilon Ursae Majoris

    Full text link
    We simulate the light variability of the Ap star epsUMa using the observed surface distributions of Fe, Cr, Ca, Mn, Mg, Sr and Ti obtained with the help of Doppler Imaging technique. Using all photometric data available we specified light variations of epsUMa modulated by its rotation from far UV to IR. We employed the LLmodels stellar model atmosphere code to predict the light variability in different photometric systems. The rotational period of epsUMa is refined to 5d088631(18). It is shown that the observed light variability can be explained as a result of the redistribution of radiative flux from the UV spectral region to the visual caused by the inhomogeneous surface distribution of chemical elements. Among seven mapped elements, only Fe and Cr significantly contribute to the amplitude of the observed light variability. In general, we find a very good agreement between theory and observations. We confirm the important role of Fe and Cr to the magnitude of the well-known depression around 5200 \AA\ through the analysis of the peculiar aa-parameter. Finally, we show that the abundance spots of considered elements cannot explain the observed variability in near UV and β\beta index which are likely due to some other causes. The inhomogeneous surface distribution of chemical elements can explain most of the observed light variability of the A-type CP star epsUMa.Comment: Accepted in A&A, 10 pages, 9 figures, 3 table

    The Lorentz force in atmospheres of CP stars: 56 Arietis

    Full text link
    The presence of electric currents in the atmospheres of magnetic chemically peculiar (mCP) stars could bring important theoretical constrains about the nature and evolution of magnetic field in these stars. The Lorentz force, which results from the interaction between the magnetic field and the induced currents, modifies the atmospheric structure and induces characteristic rotational variability of pressure-sensitive spectroscopic features, that can be analysed using phase-resolved spectroscopic observations. In this work we continue the presentation of results of the magnetic pressure studies in mCP stars focusing on the high-resolution spectroscopic observations of Bp star 56Ari. We have detected a significant variability of the Halpha, Hbeta, and Hgamma spectral lines during full rotation cycle of the star. Then these observations are interpreted in the framework of the model atmosphere analysis, which accounts for the Lorentz force effects. We used the LLmodels stellar model atmosphere code for the calculation of the magnetic pressure effects in the atmosphere of 56Ari taking into account realistic chemistry of the star and accurate computations of the microscopic plasma properties. The Synth3 code was employed to simulate phase-resolved variability of Balmer lines. We demonstrate that the model with the outward-directed Lorentz force in the dipole+quadrupole configuration is likely to reproduce the observed hydrogen lines variation. These results present strong evidences for the presence of non-zero global electric currents in the atmosphere of this early-type magnetic star.Comment: Accepted by A&A, 9 pages, 7 figures, 2 table

    Orbital parameters, chemical composition, and magnetic field of the Ap binary HD 98088

    Full text link
    HD 98088 is a synchronised, double-lined spectroscopic binary system with a magnetic Ap primary component and an Am secondary component. We study this rare system using high-resolution MuSiCoS spectropolarimetric data, to gain insight into the effect of binarity on the origin of stellar magnetism and the formation of chemical peculiarities in A-type stars. Using a new collection of 29 high-resolution Stokes VQU spectra we re-derive the orbital and stellar physical parameters and conduct the first disentangling of spectroscopic observations of the system to conduct spectral analysis of the individual stellar components. From this analysis we determine the projected rotational velocities of the stars and conduct a detailed chemical abundance analysis of each component using both the SYNTH3 and ZEEMAN spectrum synthesis codes. The surface abundances of the primary component are typical of a cool Ap star, while those of the secondary component are typical of an Am star. We present the first magnetic analysis of both components using modern data. Using Least-Squares Deconvolution, we extract the longitudinal magnetic field strength of the primary component, which is observed to vary between +1170 and -920 G with a period consistent with the orbital period. There is no field detected in the secondary component. The magnetic field in the primary is predominantly dipolar, with the positive pole oriented approximately towards the secondary.Comment: Accepted for publication by MNRAS, 17 pages, 12 figure

    Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB

    Get PDF
    We aim to understand how stellar parameters such as mass and rotation impact the distribution of star-spots on the stellar surface. To this purpose, we have used Doppler imaging to reconstruct the surface brightness distributions of three fully convective M dwarfs with similar rotation rates. We secured high cadence spectral time series observations of the 5.5 au separation binary GJ 65, comprising GJ 65A (M5.5V, Prot = 0.24 d) and GJ 65B (M6V, Prot = 0.23 d). We also present new observations of GJ 791.2A (M4.5V, Prot = 0.31 d). Observations of each star were made on two nights with UVES, covering a wavelength range from 0.64 - 1.03μm. The time series spectra reveal multiple line distortions that we interpret as cool star-spots and which are persistent on both nights suggesting stability on the time-scale of 3 d. Spots are recovered with resolutions down to 8.3° at the equator. The global spot distributions for GJ 791.2A are similar to observations made a year earlier. Similar high latitude and circumpolar spot structure is seen on GJ 791.2A and GJ 65A. However, they are surprisingly absent on GJ 65B, which instead reveals more extensive, larger, spots concentrated at intermediate latitudes. All three stars show small amplitude latitude-dependent rotation that is consistent with solid body rotation. We compare our measurements of differential rotation with previous Doppler imaging studies and discuss the results in the wider context of other observational estimates and recent theoretical predictions
    corecore