32 research outputs found

    Optical and structural analysis of solar selective absorbing coatings based on AlSiOx:W cermets

    Get PDF
    It is reported in this work the development and study of the optical and structural properties of a solar selective absorber cermet based on AlSiOx:W. A four-layer composite film structure, W/AlSiOx:W(HA)/AlSiOx:W(LA)/AlSiOx, was deposited on stainless steel substrates using the magnetron sputtering deposition method. Numerical calculations were performed to simulate the spectral properties of multilayer stacks with varying metal volume fraction cermets and film thickness. The chemical analysis was performed using X-ray photoelectron spectroscopy and the results show that in the high metal volume fraction cermet layer, AlSiOx:W(HA), about one third of W atoms are in the W-O oxidation state, another third in the Wx+ oxidation state and the last third in the W4+, W5+ and W6+ oxidation states. The X-ray diffractograms of AlSiOx:W layers show a broad peak indicating that both, W and AlSiOx, are amorphous. These results indicate that this film structure has a good spectral selective property that is suitable for solar thermal applications, with the coatings exhibiting a solar absorptance of 94-95.5% and emissivities of 8-9% (at 100 degrees C) and 10-14% (at 400 degrees C). The samples were subjected to a thermal annealing at 450 degrees C, in air, and 580 degrees C, in vacuum and showed very good oxidation resistance and thermal stability. Morphological characterizations were carried out using scanning electron microscopy and atomic force microscopy. Rutherford Backscattering experiments were also performed to analyze the tungsten depth profile.The authors acknowledge the support of the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013. The authors are also grateful to the financial support of FCT, POCI and PORL operational programs through the project POCI-01-0145-FEDER-016907 (PTDC/CTM-ENE/2882/2014), co-financed by European community fund FEDER. The authors also acknowledge GIST Japan for using the XPS-Kratos.info:eu-repo/semantics/publishedVersio

    Diversity and selective sweep in the OsAMT1;1 genomic region of rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ammonium is one of the major forms in which nitrogen is available for plant growth. <it>OsAMT1;1 </it>is a high-affinity ammonium transporter in rice (<it>Oryza sativa </it>L.), responsible for ammonium uptake at low nitrogen concentration. The expression pattern of the gene has been reported. However, variations in its nucleotides and the evolutionary pathway of its descent from wild progenitors are yet to be elucidated. In this study, nucleotide diversity of the gene <it>OsAMT1;1 </it>and the diversity pattern of seven gene fragments spanning a genomic region approximately 150 kb long surrounding the gene were surveyed by sequencing a panel of 216 rice accessions including both cultivated rice and wild relatives.</p> <p>Results</p> <p>Nucleotide polymorphism (Pi) of <it>OsAMT1;1 </it>was as low as 0.00004 in cultivated rice (<it>Oryza sativa</it>), only 2.3% of that in the common wild rice (<it>O. rufipogon</it>). A single dominant haplotype was fixed at the locus in <it>O. sativa</it>. The test values for neutrality were significantly negative in the entire region stretching 5' upstream and 3' downstream of the gene in all accessions. The value of linkage disequilibrium remained high across a 100 kb genomic region around <it>OsAMT1;1 </it>in <it>O. sativa</it>, but fell rapidly in <it>O. rufipogon </it>on either side of the promoter of <it>OsAMT1;1</it>, demonstrating a strong natural selection within or nearby the ammonium transporter.</p> <p>Conclusions</p> <p>The severe reduction in nucleotide variation at <it>OsAMT1;1 </it>in rice was caused by a selective sweep around <it>OsAMT1;1</it>, which may reflect the nitrogen uptake system under strong selection by the paddy soil during the domestication of rice. Purifying selection also occurred before the wild rice diverged into its two subspecies, namely <it>indica </it>and <it>japonica</it>. These findings would provide useful insights into the processes of evolution and domestication of nitrogen uptake genes in rice.</p

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Angled-stencil lithography based metal mesh/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene hybrid transparent electrodes for low-power and high-performance wearable thermotherapy

    Full text link
    Transparent and wearable devices have aroused immense research interest for their widespread applications, however, the fabrication of homogeneous devices is an outstanding challenge to manifest low-power wearable thermotherapy devices.</p

    Invasive evaluation of plaque morphology of symptomatic superficial femoral artery stenoses using combined near-infrared spectroscopy and intravascular ultrasound

    Full text link
    The purpose of this study is to characterize the plaque morphology of severe stenoses in the superficial femoral artery (SFA) employing combined near-infrared spectroscopy and intravascular ultrasound (NIRS-IVUS). Atherosclerosis is the most common cause of symptomatic peripheral arterial disease. Plaque composition of SFA stenoses has been characterized as primarily fibrous or fibrocalcific by non-invasive and autopsy studies. NIRS has been validated to detect lipid-core plaque (LCP) in the coronary circulation. We imaged severe SFA stenoses with NIRS-IVUS prior to revascularization in 31 patients (46 stenoses) with Rutherford claudication ⩾ class 3. Angiographic parameters included lesion location and stenosis severity. IVUS parameters included plaque burden and presence of calcium. NIRS images were analyzed for LCP and maximum lipid-core burden index in a 4-mm length of artery (maxLCBI4mm). By angiography, 38 (82.6%) lesions were calcified and 9 (19.6%) were chronic total occlusions. Baseline stenosis severity and lesion length were 86.0 ± 11.0% and 36.5 ± 46.5 mm, respectively. NIRS-IVUS identified calcium in 45 (97.8%) lesions and LCP in 17 (37.0%) lesions. MaxLCBI4mm was 433 ± 244. All lesions with LCP also contained calcium; there were no non-calcified lesions with LCP. In conclusion, this is the first study of combined NIRS-IVUS in patients with PAD. NIRS-IVUS demonstrates that nearly all patients with symptomatic severe SFA disease have fibrocalcific plaque, and one-third of such lesions contain LCP. These findings contrast with those in patients with acute coronary syndromes, and may have implications regarding the pathophysiology of atherosclerosis in different vascular beds. </jats:p

    Parametric Timing Analisys and Its Appication to Dynamic Voltage Scaling

    Full text link
    Embedded systems with real-time constraints depend on a priori knowledge of worst-case execution times (WCETs) to determine if tasks meet deadlines. Static timing analysis derives bounds on WCETs but requires statically known loop bounds. This work removes the constraint on known loop bounds through parametric analysis expressing WCETs as functions. Tighter WCETs are dynamically discovered to exploit slack by dynamic voltage scaling (DVS) saving 60% to 82% energy over DVS-oblivious techniques and showing savings close to more costly dynamic-priority DVS algorithms. Overall, parametric analysis expands the class of real-time applications to programs with loop-invariant dynamic loop bounds while retaining tight WCET bounds.This work was conducted at North Carolina State University and Florida State University; it was supported in part by NSF grants CCR-0208581, CCR-0310860, CCR-0312695, EIA-0072043, CCR-0208892, CCR-0312493 and CCR-0312531.Mohan, S.; Mueller, F.; Root, M.; Hawkins, W.; Healy, C.; Whalley, D.; Vivancos Rubio, E. (2011). Parametric Timing Analisys and Its Appication to Dynamic Voltage Scaling. ACM Transactions on Embedded Computing Systems. 10(2):1-34. doi:10.1145/1880050.1880061S13410
    corecore