3,138 research outputs found

    Simultaneous IUE, EXOSAT and optical observations of the unusual AM Her type variable H058+608

    Get PDF
    Simultaneous observations of the AM Her type variable H0538+608 made with IUE, EXOSAT, and a 1.3 m ground based telescope, and subsequent optical spectrophotometry at high and low resolution are discussed. The X-ray and optical data show clear evidence of a 3.30 + or - 0.03 hr period. Three SWP spectra were taken outside of eclipse and during overlapping phase intervals. The UV spectra contain strong emission lines characteristic of this class of objects and a flat continuum which appears to be deficient, given the brightness of source at optical and X-ray wavelengths. There is evidence for intensity variations in emission lines, particularly C IV. The X-ray light curves for H0538+608 reveal behavior which may be related to irregularities in its accretion flow

    Forcing function control of Faraday wave instabilities in viscous shallow fluids

    Full text link
    We investigate the relationship between the linear surface wave instabilities of a shallow viscous fluid layer and the shape of the periodic, parametric-forcing function (describing the vertical acceleration of the fluid container) that excites them. We find numerically that the envelope of the resonance tongues can only develop multiple minima when the forcing function has more than two local extrema per cycle. With this insight, we construct a multi-frequency forcing function that generates at onset a non-trivial harmonic instability which is distinct from a subharmonic response to any of its frequency components. We measure the corresponding surface patterns experimentally and verify that small changes in the forcing waveform cause a transition, through a bicritical point, from the predicted harmonic short-wavelength pattern to a much larger standard subharmonic pattern. Using a formulation valid in the lubrication regime (thin viscous fluid layer) and a WKB method to find its analytic solutions, we explore the origin of the observed relation between the forcing function shape and the resonance tongue structure. In particular, we show that for square and triangular forcing functions the envelope of these tongues has only one minimum, as in the usual sinusoidal case.Comment: 12 pages, 10 figure

    Broken symmetries and pattern formation in two-frequency forced Faraday waves

    Full text link
    We exploit the presence of approximate (broken) symmetries to obtain general scaling laws governing the process of pattern formation in weakly damped Faraday waves. Specifically, we consider a two-frequency forcing function and trace the effects of time translation, time reversal and Hamiltonian structure for three illustrative examples: hexagons, two-mode superlattices, and two-mode rhomboids. By means of explicit parameter symmetries, we show how the size of various three-wave resonant interactions depends on the frequency ratio m:n and on the relative temporal phase of the two driving terms. These symmetry-based predictions are verified for numerically calculated coefficients, and help explain the results of recent experiments.Comment: 4 pages, 6 figure

    Super-lattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface

    Full text link
    Standing wave patterns that arise on the surface of ferrofluids by (single frequency) parametric forcing with an ac magnetic field are investigated experimentally. Depending on the frequency and amplitude of the forcing, the system exhibits various patterns including a superlattice and subharmonic rhombuses as well as conventional harmonic hexagons and subharmonic squares. The superlattice arises in a bicritical situation where harmonic and subharmonic modes collide. The rhombic pattern arises due to the non-monotonic dispersion relation of a ferrofluid

    Pattern formation in 2-frequency forced parametric waves

    Full text link
    We present an experimental investigation of superlattice patterns generated on the surface of a fluid via parametric forcing with 2 commensurate frequencies. The spatio-temporal behavior of 4 qualitatively different types of superlattice patterns is described in detail. These states are generated via a number of different 3--wave resonant interactions. They occur either as symmetry--breaking bifurcations of hexagonal patterns composed of a single unstable mode or via nonlinear interactions between the two primary unstable modes generated by the two forcing frequencies. A coherent picture of these states together with the phase space in which they appear is presented. In addition, we describe a number of new superlattice states generated by 4--wave interactions that arise when symmetry constraints rule out 3--wave resonances.Comment: The paper contains 34 pages and 53 figures and provides an extensive review of both the theoretical and experimental work peformed in this syste

    Parametrically Excited Surface Waves: Two-Frequency Forcing, Normal Form Symmetries, and Pattern Selection

    Get PDF
    Motivated by experimental observations of exotic standing wave patterns in the two-frequency Faraday experiment, we investigate the role of normal form symmetries in the pattern selection problem. With forcing frequency components in ratio m/n, where m and n are co-prime integers, there is the possibility that both harmonic and subharmonic waves may lose stability simultaneously, each with a different wavenumber. We focus on this situation and compare the case where the harmonic waves have a longer wavelength than the subharmonic waves with the case where the harmonic waves have a shorter wavelength. We show that in the former case a normal form transformation can be used to remove all quadratic terms from the amplitude equations governing the relevant resonant triad interactions. Thus the role of resonant triads in the pattern selection problem is greatly diminished in this situation. We verify our general results within the example of one-dimensional surface wave solutions of the Zhang-Vinals model of the two-frequency Faraday problem. In one-dimension, a 1:2 spatial resonance takes the place of a resonant triad in our investigation. We find that when the bifurcating modes are in this spatial resonance, it dramatically effects the bifurcation to subharmonic waves in the case of forcing frequencies are in ratio 1/2; this is consistent with the results of Zhang and Vinals. In sharp contrast, we find that when the forcing frequencies are in ratio 2/3, the bifurcation to (sub)harmonic waves is insensitive to the presence of another spatially-resonant bifurcating mode.Comment: 22 pages, 6 figures, late

    Amplitude measurements of Faraday waves

    Full text link
    A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quantitative agreement up to supercritical drive amplitudes of 20%. The validity of an existing perturbation analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure

    Faraday instability on viscous ferrofluids in a horizontal magnetic field: Oblique rolls of arbitrary orientation

    Full text link
    A linear stability analysis of the free surface of a horizontally unbounded ferrofluid layer of arbitrary depth subjected to vertical vibrations and a horizontal magnetic field is performed. A nonmonotonic dependence of the stability threshold on the magnetic field is found at high frequencies of the vibrations. The reasons of the decrease of the critical acceleration amplitude caused by a horizontal magnetic field are discussed. It is revealed that the magnetic field can be used to select the first unstable pattern of Faraday waves. In particular, a rhombic pattern as a superposition of two different oblique rolls can occur. A scaling law is presented which maps all data into one graph for the tested range of viscosities, frequencies, magnetic fields and layer thicknesses.Comment: 8 pages, 6 figures, RevTex

    "It All Ended in an Unsporting Way": Serbian Football and the Disintegration of Yugoslavia, 1989-2006

    Get PDF
    Part of a wider examination into football during the collapse of Eastern European Communism between 1989 and 1991, this article studies the interplay between Serbian football and politics during the period of Yugoslavia's demise. Research utilizing interviews with individuals directly involved in the Serbian game, in conjunction with contemporary Yugoslav media sources, indicates that football played an important proactive role in the revival of Serbian nationalism. At the same time the Yugoslav conflict, twinned with a complex transition to a market economy, had disastrous consequences for football throughout the territories of the former Yugoslavia. In the years following the hostilities the Serbian game has suffered decline, major financial hardship and continuing terrace violence, resulting in widespread nostalgia for the pre-conflict era
    corecore