1,520 research outputs found
Long wavelength structural anomalies in jammed systems
The structural properties of static, jammed packings of monodisperse spheres
in the vicinity of the jamming transition are investigated using large-scale
computer simulations. At small wavenumber , we argue that the anomalous
behavior in the static structure factor, , is consequential of an
excess of low-frequency, collective excitations seen in the vibrational
spectrum. This anomalous feature becomes more pronounced closest to the jamming
transition, such that at the transition point. We introduce an
appropriate dispersion relation that accounts for these phenomena that leads us
to relate these structural features to characteristic length scales associated
with the low-frequency vibrational modes of these systems. When the particles
are frictional, this anomalous behavior is suppressed providing yet more
evidence that jamming transitions of frictional spheres lie at lower packing
fractions that that for frictionless spheres. These results suggest that the
mechanical properties of jammed and glassy media may therefore be inferred from
measurements of both the static and dynamical structure factors.Comment: 8 pages, 6 figure captions. Completely revised version to appear in
Phys. Rev.
Granular flow down a rough inclined plane: transition between thin and thick piles
The rheology of granular particles in an inclined plane geometry is studied
using molecular dynamics simulations. The flow--no-flow boundary is determined
for piles of varying heights over a range of inclination angles . Three
angles determine the phase diagram: , the angle of repose, is the
angle at which a flowing system comes to rest; , the maximum angle
of stability, is the inclination required to induce flow in a static system;
and is the maximum angle for which stable, steady state flow is
observed. In the stable flow region , three
flow regimes can be distinguished that depend on how close is to
: i) : Bagnold rheology, characterized by a
mean particle velocity in the direction of flow that scales as
, for a pile of height , ii)
: the slow flow regime, characterized by a linear
velocity profile with depth, and iii) : avalanche flow
characterized by a slow underlying creep motion combined with occasional free
surface events and large energy fluctuations. We also probe the physics of the
initiation and cessation of flow. The results are compared to several recent
experimental studies on chute flows and suggest that differences between
measured velocity profiles in these experiments may simply be a consequence of
how far the system is from jamming.Comment: 19 pages, 14 figs, submitted to Physics of Fluid
Confined granular packings: structure, stress, and forces
The structure and stresses of static granular packs in cylindrical containers
are studied using large-scale discrete element molecular dynamics simulations
in three dimensions. We generate packings by both pouring and sedimentation and
examine how the final state depends on the method of construction. The vertical
stress becomes depth-independent for deep piles and we compare these stress
depth-profiles to the classical Janssen theory. The majority of the tangential
forces for particle-wall contacts are found to be close to the Coulomb failure
criterion, in agreement with the theory of Janssen, while particle-particle
contacts in the bulk are far from the Coulomb criterion. In addition, we show
that a linear hydrostatic-like region at the top of the packings unexplained by
the Janssen theory arises because most of the particle-wall tangential forces
in this region are far from the Coulomb yield criterion. The distributions of
particle-particle and particle-wall contact forces exhibit
exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references,
fixed typo
Stationary shear flows of dense granular materials : a tentative continuum modelling
We propose a simple continuum model to interpret the shearing motion of
dense, dry and cohesion-less granular media. Compressibility, dilatancy and
Coulomb-like friction are the three basic ingredients. The granular stress is
split into a rate-dependent part representing the rebound-less impacts between
grains and a rate-independent part associated with long-lived contacts. Because
we consider stationary flows only, the grain compaction and the grain velocity
are the two main variables. The predicted velocity and compaction profiles are
in apparent agreement with the experimental or numerical results concerning
free-surface shear flows as well as confined shear flow
Stability of Monomer-Dimer Piles
We measure how strong, localized contact adhesion between grains affects the
maximum static critical angle, theta_c, of a dry sand pile. By mixing dimer
grains, each consisting of two spheres that have been rigidly bonded together,
with simple spherical monomer grains, we create sandpiles that contain strong
localized adhesion between a given particle and at most one of its neighbors.
We find that tan(theta_c) increases from 0.45 to 1.1 and the grain packing
fraction, Phi, decreases from 0.58 to 0.52 as we increase the relative number
fraction of dimer particles in the pile, nu_d, from 0 to 1. We attribute the
increase in tan(theta_c(nu_d)) to the enhanced stability of dimers on the
surface, which reduces the density of monomers that need to be accomodated in
the most stable surface traps. A full characterization and geometrical
stability analysis of surface traps provides a good quantitative agreement
between experiment and theory over a wide range of nu_d, without any fitting
parameters.Comment: 11 pages, 12 figures consisting of 21 eps files, submitted to PR
Density of states in random lattices with translational invariance
We propose a random matrix approach to describe vibrational excitations in
disordered systems. The dynamical matrix M is taken in the form M=AA^T where A
is some real (not generally symmetric) random matrix. It guaranties that M is a
positive definite matrix which is necessary for mechanical stability of the
system. We built matrix A on a simple cubic lattice with translational
invariance and interaction between nearest neighbors. We found that for certain
type of disorder phonons cannot propagate through the lattice and the density
of states g(w) is a constant at small w. The reason is a breakdown of affine
assumptions and inapplicability of the elasticity theory. Young modulus goes to
zero in the thermodynamic limit. It strongly reminds of the properties of a
granular matter at the jamming transition point. Most of the vibrations are
delocalized and similar to diffusons introduced by Allen, Feldman et al., Phil.
Mag. B v.79, 1715 (1999).Comment: 4 pages, 5 figure
Fragility and hysteretic creep in frictional granular jamming
The granular jamming transition is experimentally investigated in a
two-dimensional system of frictional, bi-dispersed disks subject to
quasi-static, uniaxial compression at zero granular temperature. Currently
accepted results show the jamming transition occurs at a critical packing
fraction . In contrast, we observe the first compression cycle exhibits
{\it fragility} - metastable configuration with simultaneous jammed and
un-jammed clusters - over a small interval in packing fraction (). The fragile state separates the two conditions that define
with an exponential rise in pressure starting at and an exponential
fall in disk displacements ending at . The results are explained
through a percolation mechanism of stressed contacts where cluster growth
exhibits strong spatial correlation with disk displacements. Measurements with
several disk materials of varying elastic moduli and friction coefficients
, show friction directly controls the start of the fragile state, but
indirectly controls the exponential slope. Additionally, we experimentally
confirm recent predictions relating the dependence of on . Under
repetitive loading (compression), the system exhibits hysteresis in pressure,
and the onset increases slowly with repetition number. This friction
induced hysteretic creep is interpreted as the granular pack's evolution from a
metastable to an eventual structurally stable configuration. It is shown to
depend upon the quasi-static step size which provides the only
perturbative mechanism in the experimental protocol, and the friction
coefficient which acts to stabilize the pack.Comment: 12 pages, 10 figure
Gravity-driven Dense Granular Flows
We report and analyze the results of numerical studies of dense granular
flows in two and three dimensions, using both linear damped springs and
Hertzian force laws between particles. Chute flow generically produces a
constant density profile that satisfies scaling relations suggestive of a
Bagnold grain inertia regime. The type of force law has little impact on the
behavior of the system. Bulk and surface flows differ in their failure criteria
and flow rheology, as evidenced by the change in principal stress directions
near the surface. Surface-only flows are not observed in this geometry.Comment: 4 pages, RevTeX 3.0, 4 PostScript figures (5 files) embedded with
eps
Stress response inside perturbed particle assemblies
The effect of structural disorder on the stress response inside three
dimensional particle assemblies is studied using computer simulations of
frictionless sphere packings. Upon applying a localised, perturbative force
within the packings, the resulting {\it Green's} function response is mapped
inside the different assemblies, thus providing an explicit view as to how the
imposed perturbation is transmitted through the packing. In weakly disordered
arrays, the resulting transmission of forces is of the double-peak variety, but
with peak widths scaling linearly with distance from the source of the
perturbation. This behaviour is consistent with an anisotropic elasticity
response profile. Increasing the disorder distorts the response function until
a single-peak response is obtained for fully disordered packings consistent
with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte
A constitutive law for dense granular flows
A continuum description of granular flows would be of considerable help in
predicting natural geophysical hazards or in designing industrial processes.
However, the constitutive equations for dry granular flows, which govern how
the material moves under shear, are still a matter of debate. One difficulty is
that grains can behave like a solid (in a sand pile), a liquid (when poured
from a silo) or a gas (when strongly agitated). For the two extreme regimes,
constitutive equations have been proposed based on kinetic theory for
collisional rapid flows, and soil mechanics for slow plastic flows. However,
the intermediate dense regime, where the granular material flows like a liquid,
still lacks a unified view and has motivated many studies over the past decade.
The main characteristics of granular liquids are: a yield criterion (a critical
shear stress below which flow is not possible) and a complex dependence on
shear rate when flowing. In this sense, granular matter shares similarities
with classical visco-plastic fluids such as Bingham fluids. Here we propose a
new constitutive relation for dense granular flows, inspired by this analogy
and recent numerical and experimental work. We then test our three-dimensional
(3D) model through experiments on granular flows on a pile between rough
sidewalls, in which a complex 3D flow pattern develops. We show that, without
any fitting parameter, the model gives quantitative predictions for the flow
shape and velocity profiles. Our results support the idea that a simple
visco-plastic approach can quantitatively capture granular flow properties, and
could serve as a basic tool for modelling more complex flows in geophysical or
industrial applications.Comment: http://www.nature.com/nature/journal/v441/n7094/abs/nature04801.htm
- …
