124 research outputs found
Amyloid beta and diabetic pathology cooperatively stimulate cytokine expression in an Alzheimer's mouse model
Background Diabetes is a risk factor for developing Alzheimer's disease (AD); however, the mechanism by which diabetes can promote AD pathology remains unknown. Diabetes results in diverse molecular changes in the brain, including dysregulation of glucose metabolism and loss of cerebrovascular homeostasis. Although these changes have been associated with increased A beta pathology and increased expression of glial activation markers in APPswe/PS1dE9 (APP/PS1) mice, there has been limited characterization, to date, of the neuroinflammatory changes associated with diabetic conditions. Methods To more fully elucidate neuroinflammatory changes associated with diabetes that may drive AD pathology, we combined the APP/PS1 mouse model with either high-fat diet (HFD, a model of pre-diabetes), the genetic db/db model of type 2 diabetes, or the streptozotocin (STZ) model of type 1 diabetes. We then used a multiplexed immunoassay to quantify cortical changes in cytokine proteins. Results Our analysis revealed that pathology associated with either db/db, HFD, or STZ models yielded upregulation of a broad profile of cytokines, including chemokines (e.g., MIP-1 alpha, MIP-1 beta, and MCP-1) and pro-inflammatory cytokines, including IL-1 alpha, IFN-gamma, and IL-3. Moreover, multivariate partial least squares regression analysis showed that combined diabetic-APP/PS1 models yielded cooperatively enhanced expression of the cytokine profile associated with each diabetic model alone. Finally, in APP/PS1xdb/db mice, we found that circulating levels of A beta 1-40, A beta 1-42, glucose, and insulin all correlated with cytokine expression in the brain, suggesting a strong relationship between peripheral changes and brain pathology. Conclusions Altogether, our multiplexed analysis of cytokines shows that Alzheimer's and diabetic pathologies cooperate to enhance profiles of cytokines reported to be involved in both diseases. Moreover, since many of the identified cytokines promote neuronal injury, A beta and tau pathology, and breakdown of the blood-brain barrier, our data suggest that neuroinflammation may mediate the effects of diabetes on AD pathogenesis. Therefore, strategies targeting neuroinflammatory signaling, as well as metabolic control, may provide a promising strategy for intervening in the development of diabetes-associated AD
The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice
Nearly every extracellular ligand that has been found to play a role in regulating bone biology acts, at least in part, through MAPK pathways. Nevertheless, much remains to be learned about the contribution of MAPKs to osteoblast biology in vivo. Here we report that the p38 MAPK pathway is required for normal skeletogenesis in mice, as mice with deletion of any of the MAPK pathway member–encoding genes MAPK kinase 3 (Mkk3), Mkk6, p38a, or p38b displayed profoundly reduced bone mass secondary to defective osteoblast differentiation. Among the MAPK kinase kinase (MAP3K) family, we identified TGF-β–activated kinase 1 (TAK1; also known as MAP3K7) as the critical activator upstream of p38 in osteoblasts. Osteoblast-specific deletion of Tak1 resulted in clavicular hypoplasia and delayed fontanelle fusion, a phenotype similar to the cleidocranial dysplasia observed in humans haploinsufficient for the transcription factor runt-related transcription factor 2 (Runx2). Mechanistic analysis revealed that the TAK1–MKK3/6–p38 MAPK axis phosphorylated Runx2, promoting its association with the coactivator CREB-binding protein (CBP), which was required to regulate osteoblast genetic programs. These findings reveal an in vivo function for p38β and establish that MAPK signaling is essential for bone formation in vivo. These results also suggest that selective p38β agonists may represent attractive therapeutic agents to prevent bone loss associated with osteoporosis and aging
Low-Energy (\u3c 20 eV) and High-Energy (1000 eV) Electron-Induced Methanol Radiolysis of Astrochemical Interest
We report the first infrared study of the low-energy (\u3c 20 eV) electron-induced reactions of condensed methanol. Our goal is to simulate processes which occur when highenergy cosmic rays interact with interstellar and cometary ices, where methanol, a precursor of several prebiotic species, is relatively abundant. The interactions of high-energy radiation, such as cosmic rays (Emax ~1020 eV), with matter produce large numbers of low-energy secondary electrons, which are known to initiate radiolysis reactions in the condensed phase. Using temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS), we have investigated low-energy (5–20 eV) and high-energy (~1000 eV) electron-induced reactions in condensed methanol (CH3OH). IRAS has the benefit that it does not require thermal processing prior to product detection. Using IRAS, we have found evidence for the formation of ethylene glycol (HOCH2CH2OH), formaldehyde (CH2O), dimethyl ether (CH3OCH3), methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and the hydroxyl methyl radical (•CH2OH) upon both low-energy and high-energy electron irradiation of condensed methanol at ~85 K. Additionally, TPD results, presented herein, are similar for methanol films irradiated with both 1000 eV and 20 eV electrons. These IRAS and TPD findings are qualitatively consistent with the hypothesis that high-energy condensed phase radiolysis is mediated by low-energy electron-induced reactions. Moreover, methoxymethanol (CH3OCH2OH) could serve as a tracer molecule for electron-induced reactions in the interstellar medium. The results of experiments such as ours may provide a fundamental understanding of how complex organic molecules (COM) are synthesized in cosmic ices
Cluster randomized trial of the impact of an obesity prevention intervention on child care center nutrition and physical activity environment over two years
Objective: The prevalence of obesity among preschool-aged children in the United States remains unacceptably high. Here we examine the impact of Healthy Caregivers-Healthy Children (HC2) Phase 2, a child care center (CCC)-based obesity prevention intervention on changes in the CCC nutrition and physical activity environment over two school years. Design: This was a cluster randomized trial with 12 CCC receiving the HC2 intervention arm and 12 in the control arm. The primary outcome was change in the Environment and Policy Assessment and Observation (EPAO) tool over two school years (Fall-2015, Spring-2016 and Spring-2017). Changes in EPAO physical activity and nutrition score were analyzed via a (1) random effects mixed models and (2) mixed models to determine the effect of HC2 versus control. Setting: The study was conducted in 24 CCCs serving low-income, ethnically diverse families in Miami-Dade County. Participants: Intervention CCCs received (1) teachers/parents/children curriculum; (2) snack, beverage, physical activity, and screen time policies; and (3) menu modifications. Results: Two-year EPAO nutrition score changes in intervention CCCs were almost twice that of control CCCs. The EPAO physical activity environment scores only slightly improved in intervention CCCs versus control CCCs. Intervention CCCs showed higher combined EPAO physical activity and nutrition scores compared to control CCCs over the 2-year study period (β=0.09, P=0.05). Conclusions: Obesity prevention programs can have a positive impact on the CCC nutrition environment and can promote healthy weight in early childhood. CCCs may need consistent support to improve the physical activity environment to ensure the policies remain intact
A Case of Prostatic Signet-Ring Cell-like Carcinoma with Pagetoid Spread and Intraductal Carcinoma and Long-Term Survival: PD-L1 and Mismatch Repair System Proteins (MMR) Immunohistochemical Evaluation with Systematic Literature Review
Genetic Evidence of Serum Phosphate-Independent Functions of FGF-23 on Bone
Maintenance of physiologic phosphate balance is of crucial biological importance, as it is fundamental to cellular function, energy metabolism, and skeletal mineralization. Fibroblast growth factor-23 (FGF-23) is a master regulator of phosphate homeostasis, but the molecular mechanism of such regulation is not yet completely understood. Targeted disruption of the Fgf-23 gene in mice (Fgf-23−/−) elicits hyperphosphatemia, and an increase in renal sodium/phosphate co-transporter 2a (NaPi2a) protein abundance. To elucidate the pathophysiological role of augmented renal proximal tubular expression of NaPi2a in Fgf-23−/− mice and to examine serum phosphate–independent functions of Fgf23 in bone, we generated a new mouse line deficient in both Fgf-23 and NaPi2a genes, and determined the effect of genomic ablation of NaPi2a from Fgf-23−/− mice on phosphate homeostasis and skeletal mineralization. Fgf-23−/−/NaPi2a−/− double mutant mice are viable and exhibit normal physical activities when compared to Fgf-23−/− animals. Biochemical analyses show that ablation of NaPi2a from Fgf-23−/− mice reversed hyperphosphatemia to hypophosphatemia by 6 weeks of age. Surprisingly, despite the complete reversal of serum phosphate levels in Fgf-23−/−/NaPi2a−/−, their skeletal phenotype still resembles the one of Fgf23−/− animals. The results of this study provide the first genetic evidence of an in vivo pathologic role of NaPi2a in regulating abnormal phosphate homeostasis in Fgf-23−/− mice by deletion of both NaPi2a and Fgf-23 genes in the same animal. The persistence of the skeletal anomalies in double mutants suggests that Fgf-23 affects bone mineralization independently of systemic phosphate homeostasis. Finally, our data support (1) that regulation of phosphate homeostasis is a systemic effect of Fgf-23, while (2) skeletal mineralization and chondrocyte differentiation appear to be effects of Fgf-23 that are independent of phosphate homeostasis
Determination of RNA structural diversity and its role in HIV-1 RNA splicing
Human immunodeficiency virus 1 (HIV-1) is a retrovirus with a ten-kilobase single-stranded RNA genome. HIV-1 must express all of its gene products from a single primary transcript, which undergoes alternative splicing to produce diverse protein products that include structural proteins and regulatory factors. Despite the critical role of alternative splicing, the mechanisms that drive the choice of splice site are poorly understood. Synonymous RNA mutations that lead to severe defects in splicing and viral replication indicate the presence of unknown cis-regulatory elements. Here we use dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) to investigate the structure of HIV-1 RNA in cells, and develop an algorithm that we name ‘detection of RNA folding ensembles using expectation–maximization’ (DREEM), which reveals the alternative conformations that are assumed by the same RNA sequence. Contrary to previous models that have analysed population averages, our results reveal heterogeneous regions of RNA structure across the entire HIV-1 genome. In addition to confirming that in vitro characterized alternative structures for the HIV-1 Rev responsive element also exist in cells, we discover alternative conformations at critical splice sites that influence the ratio of transcript isoforms. Our simultaneous measurement of splicing and intracellular RNA structure provides evidence for the long-standing hypothesis that heterogeneity in RNA conformation regulates splice-site use and viral gene expression
Author Correction: Determination of RNA structural diversity and its role in HIV-1 RNA splicing
Correction to "Determination of RNA structural diversity and its role in HIV-1 RNA splicing
Toward video tampering exposure: inferring compression parameters from pixels.
Video tampering detection remains an open problem in the field of digital media forensics. Some existing methods focus on recompression detection because any changes made to the pixels of a video will require recompression of the complete stream. Recompression can be ascertained whenever there is a mismatch between compression parameters encoded in the syntax elements of the compressed bitstream and those derived from the pixels themselves. However, deriving compression parameters directly and solely from the pixels is not trivial. In this paper we propose a new method to estimate the H.264/AVC quantisation parameter (QP) in frame patches from raw pixels using Convolutional Neural Networks (CNN) and class composition. Extensive experiments show that QP of key-frames can be estimated using CNN. Results also show that accuracy drops for predicted frames. These results open new, interesting research directions in the domain of video tampering/forgery detection
Deletion of PTH Rescues Skeletal Abnormalities and High Osteopontin Levels in Klotho−/− Mice
Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH), Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23−/− and Klotho−/− (Kl−/−) mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23−/− mice ameliorated the phenotype in Fgf23−/−/PTH−/− mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23−/− mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl−/− (Kl−/−/PTH−/− or DKO) mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl−/−/PTH−/− mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn) in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23−/−/PTH−/− mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl−/−/PTH−/− mice. Moreover, continuous PTH infusion of Kl−/− mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl−/−, but not of Fgf23−/− mice, possibly by regulating Opn expression. These are significant new perceptions into the role of PTH in skeletal and disease processes and suggest FGF23-independent interactions of PTH with Klotho
- …
