2,684 research outputs found
Light scalar at LHC: the Higgs or the dilaton?
It is likely that the LHC will observe a color- and charge-neutral scalar
whose decays are consistent with those of the Standard Model (SM) Higgs boson.
The Higgs interpretation of such a discovery is not the only possibility. For
example, electroweak symmetry breaking (EWSB) could be triggered by a
spontaneously broken, nearly conformal sector. The spectrum of states at the
electroweak scale would then contain a narrow scalar resonance, the
pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-like
properties. If the conformal sector is strongly coupled, this pseudo-dilaton
may be the only new state accessible at high energy colliders. We discuss the
prospects for distinguishing this mode from a minimal Higgs boson at the LHC
and ILC. The main discriminants between the two scenarios are (1) cubic
self-interactions and (2) a potential enhancement of couplings to massless SM
gauge bosons. A particularly interesting situation arises when the scale f of
conformal symmetry breaking is approximately the electroweak scale v~246 GeV.
Although in this case the LHC may not be able to tell apart a pseudo-dilaton
from the Higgs boson, the self-interactions differ in a way that depends only
on the scaling dimension of certain operators in the conformal sector. This
opens the possibility of using dilaton pair production at future colliders as a
probe of EWSB induced by nearly conformal new physics.Comment: 7 pages, LaTe
Contamination
Soil contamination occurs when substances are added to soil, resulting in increases in concentrations
above background or reference levels. Pollution may follow from contamination when contaminants
are present in amounts that are detrimental to soil quality and become harmful to the environment or
human health. Contamination can occur via a range of pathways including direct application to land and
indirect application from atmospheric deposition.
Contamination was identified by SEPA (2001) as a significant threat to soil quality in many parts of
Scotland. Towers et al. (2006) identified four principal contamination threats to Scottish soils: acidification;
eutrophication; metals; and pesticides. The Scottish Soil Framework (Scottish Government, 2009) set out
the potential impact of these threats on the principal soil functions.
Severe contamination can lead to “contaminated land” [as defined under Part IIA of the Environmental
Protection Act (1990)]. This report does not consider the state and impacts of contaminated land on
the wider environment in detail. For further information on contaminated land, see ‘Dealing with Land
Contamination in Scotland’ (SEPA, 2009).
This chapter considers the causes of soil contamination and their environmental and socio-economic
impacts before going on to discuss the status of, and trends in, levels of contaminants in Scotland’s soils
Standard Model couplings and collider signatures of a light scalar
The electroweak symmetry breaking (EWSB) sector of the Standard Model can be
far richer and more interesting than the usual single scalar doublet model. We
explore scenarios where the EWSB sector is nearly scale invariant and
consequently gives rise to a light CP even scalar particle. The one-doublet SM
is in that category, as are many other models with either weakly or strongly
coupled sectors that trigger EWSB. We study the couplings of the light scalar
to the SM particles that can arise from the explicit breaking of scale
invariance focusing on the possible differences with the minimal SM. The
couplings of the light scalar to light fermions, as well as to the massless
gauge bosons, can be significantly enhanced. We find possible new discovery
channels due to the decays of the conformal scalar into e^+e^- and mu^+mu^-
pairs as well as new production channels via light quark annihilation.Comment: 10 pages, 7 figure
Spin dependent masses and Sim(2) symmetry
Recently, Cohen and Glashow pointed out that all known experimental tests of
relativistic kinematics are consistent with invariance of physics under the
four-parameter subgroup Sim(2) of the Lorentz group. The massive one-particle
irreducible representations of ISim(2), that is Sim(2) times spacetime
translations, are all one-dimensional, labeled by spin along a preferred axis.
Consequently particle theories based on this symmetry can accomodate lepton
number conserving masses for left-handed neutrinos without the need to
introduce sterile states. The same property of massive particle
representations, however, also leads to the possibility that particle masses
may be split within the diffferent spins of a representation of the ordinary
Poincare group. In this article we investigate the low-energy structure of
theories with spin dependent masses and comment on the bounds on such effects.Comment: 6 page
Construction and Performance of a Micro-Pattern Stereo Detector with Two Gas Electron Multipliers
The construction of a micro-pattern gas detector of dimensions 40x10 cm**2 is
described. Two gas electron multiplier foils (GEM) provide the internal
amplification stages. A two-layer readout structure was used, manufactured in
the same technology as the GEM foils. The strips of each layer cross at an
effective crossing angle of 6.7 degrees and have a 406 um pitch. The
performance of the detector has been evaluated in a muon beam at CERN using a
silicon telescope as reference system. The position resolutions of two
orthogonal coordinates are measured to be 50 um and 1 mm, respectively. The
muon detection efficiency for two-dimensional space points reaches 96%.Comment: 21 pages, 17 figure
High fat diet attenuates the anticontractile activity of aortic PVAT via a mechanism involving AMPK and reduced adiponectin secretion
Background and aim: Perivascular adipose tissue (PVAT) positively regulates vascular function through production of factors such as adiponectin but this effect is attenuated in obesity. The enzyme AMP-activated protein kinase (AMPK) is present in PVAT and is implicated in mediating the vascular effects of adiponectin. In this study, we investigated the effect of an obesogenic high fat diet (HFD) on aortic PVAT and whether any changes involved AMPK.
Methods: Wild type Sv129 (WT) and AMPKα1 knockout (KO) mice aged 8 weeks were fed normal diet (ND) or HFD (42% kcal fat) for 12 weeks. Adiponectin production by PVAT was assessed by ELISA and AMPK expression studied using immunoblotting. Macrophages in PVAT were identified using immunohistochemistry and markers of M1 and M2 macrophage subtypes evaluated using real time-qPCR. Vascular responses were measured in endothelium-denuded aortic rings with or without attached PVAT. Carotid wire injury was performed and PVAT inflammation studied 7 days later.
Key results: Aortic PVAT from KO and WT mice was morphologically indistinct but KO PVAT had more infiltrating macrophages. HFD caused an increased infiltration of macrophages in WT mice with increased expression of the M1 macrophage markers Nos2 and Il1b and the M2 marker Chil3. In WT mice, HFD reduced the anticontractile effect of PVAT as well as reducing adiponectin secretion and AMPK phosphorylation. PVAT from KO mice on ND had significantly reduced adiponectin secretion and no anticontractile effect and feeding HFD did not alter this. Wire injury induced macrophage infiltration of PVAT but did not cause further infiltration in KO mice.
Conclusions: High-fat diet causes an inflammatory infiltrate, reduced AMPK phosphorylation and attenuates the anticontractile effect of murine aortic PVAT. Mice lacking AMPKα1 phenocopy many of the changes in wild-type aortic PVAT after HFD, suggesting that AMPK may protect the vessel against deleterious changes in response to HFD
- …
